Nejvíce citovaný článek - PubMed ID 22892601
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
- MeSH
- lidé MeSH
- nádory ledvin * MeSH
- Světová zdravotnická organizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
Renal cell carcinoma (RCC) subtypes are increasingly being discerned via their molecular underpinnings. Frequently this can be correlated to histologic and immunohistochemical surrogates, such that only simple targeted molecular assays, or none at all, are needed for diagnostic confirmation. In clear cell RCC, VHL mutation and 3p loss are well known; however, other genes with emerging important roles include SETD2, BAP1, and PBRM1, among others. Papillary RCC type 2 is now known to include likely several different molecular entities, such as fumarate hydratase (FH) deficient RCC. In MIT family translocation RCC, an increasing number of gene fusions are now described. Some TFE3 fusion partners, such as NONO, GRIPAP1, RBMX, and RBM10 may show a deceptive fluorescence in situ hybridization result due to the proximity of the genes on the same chromosome. FH and succinate dehydrogenase deficient RCC have implications for patient counseling due to heritable syndromes and the aggressiveness of FH-deficient RCC. Immunohistochemistry is increasingly available and helpful for recognizing both. Emerging tumor types with strong evidence for distinct diagnostic entities include eosinophilic solid and cystic RCC and TFEB/VEGFA/6p21 amplified RCC. Other emerging entities that are less clearly understood include TCEB1 mutated RCC, RCC with ALK rearrangement, renal neoplasms with mutations of TSC2 or MTOR, and RCC with fibromuscular stroma. In metastatic RCC, the role of molecular studies is not entirely defined at present, although there may be an increasing role for genomic analysis related to specific therapy pathways, such as for tyrosine kinase or MTOR inhibitors.
- MeSH
- dědičné nádorové syndromy diagnóza genetika metabolismus patologie MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk diagnóza genetika metabolismus patologie MeSH
- laboratorní medicína MeSH
- lidé MeSH
- metastázy nádorů MeSH
- molekulární patologie MeSH
- mutace MeSH
- nádorové biomarkery * genetika metabolismus MeSH
- nádory ledvin diagnóza genetika metabolismus patologie MeSH
- prognóza MeSH
- společnosti lékařské MeSH
- urologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- konsensus - konference MeSH
- směrnice pro lékařskou praxi MeSH
- Názvy látek
- nádorové biomarkery * MeSH
TFEB is overexpressed in TFEB-rearranged renal cell carcinomas as well as in renal tumors with amplifications of TFEB at 6p21.1. As recent literature suggests that renal tumors with 6p21.1 amplification behave more aggressively than those with rearrangements of TFEB, we compared relative TFEB gene expression in these tumors. This study included 37 TFEB-altered tumors: 15 6p21.1-amplified and 22 TFEB-rearranged (including 5 cases from The Cancer Genome Atlas data set). TFEB status was verified using a combination of fluorescent in situ hybridization (n=27) or comprehensive molecular profiling (n=13) and digital droplet polymerase chain reaction was used to quantify TFEB mRNA expression in 6p21.1-amplified (n=9) and TFEB-rearranged renal tumors (n=19). These results were correlated with TFEB immunohistochemistry. TFEB-altered tumors had higher TFEB expression when normalized to B2M (mean: 168.9%, n=28), compared with non-TFEB-altered controls (mean: 7%, n=18, P=0.005). Interestingly, TFEB expression in tumors with rearrangements (mean: 224.7%, n=19) was higher compared with 6p21.1-amplified tumors (mean: 51.2%, n=9; P=0.06). Of note, classic biphasic morphology was only seen in TFEB-rearranged tumors and when present correlated with 6.8-fold higher TFEB expression (P=0.00004). Our results suggest that 6p21.1 amplified renal tumors show increased TFEB gene expression but not as much as t(6;11) renal tumors. These findings correlate with the less consistent/diffuse expression of downstream markers of TFEB activation (cathepsin K, melan A, HMB45) seen in the amplified neoplasms. This suggests that the aggressive biological behavior of 6p21.1 amplified renal tumors might be secondary to other genes at the 6p21.1 locus that are co-amplified, such as VEGFA and CCND3, or other genetic alterations.
- MeSH
- dítě MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk diagnóza metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádory ledvin diagnóza metabolismus patologie MeSH
- následné studie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory BHLH-Zip metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery MeSH
- TFEB protein, human MeSH Prohlížeč
- transkripční faktory BHLH-Zip MeSH
The spectrum of the renal oncocytic tumors has been expanded in recent years to include several novel and emerging entities. We describe a cohort of novel, hitherto unrecognized and morphologically distinct high-grade oncocytic tumors (HOT), currently diagnosed as "unclassified" in the WHO classification. We identified 14 HOT by searching multiple institutional archives. Morphologic, immunohistochemical (IHC), molecular genetic, and molecular karyotyping studies were performed to investigate these tumors. The patients included 3 men and 11 women, with age range from 25 to 73 years (median 50, mean 49 years). Tumor size ranged from 1.5 to 7.0 cm in the greatest dimension (median 3, mean 3.4 cm). The tumors were all pT1 stage. Microscopically, they showed nested to solid growth, and focal tubulocystic architecture. The neoplastic cells were uniform with voluminous oncocytic cytoplasm. Prominent intracytoplasmic vacuoles were frequently seen, but no irregular (raisinoid) nuclei or perinuclear halos were present. All tumors demonstrated prominent nucleoli (WHO/ISUP grade 3 equivalent). Nine of 14 cases were positive for CD117 and cytokeratin (CK) 7 was either negative or only focally positive in of 6/14 cases. All tumors were positive for AE1-AE3, CK18, PAX 8, antimitochondrial antigen, and SDHB. Cathepsin K was positive in 13/14 cases and CD10 was positive in 12/13 cases. All cases were negative for TFE3, HMB45, Melan-A. No TFEB and TFE3 genes rearrangement was found in analyzable cases. By array CGH, complete chromosomal losses or gains were not found in any of the cases, and 3/9 cases showed absence of any abnormalities. Chromosomal losses were detected on chromosome 19 (4/9), 3 with losses of the short arm (p) and 1 with losses of both arms (p and q). Loss of chromosome 1 was found in 3/9 cases; gain of 5q was found in 1/9 cases. On molecular karyotyping, 3/3 evaluated cases showed loss of heterozygosity (LOH) on 16p11.2-11.1 and 2/3 cases showed LOH at 7q31.31. Copy number (CN) losses were found at 7q11.21 (3/3), Xp11.21 (3/3), Xp11.22-11.21 (3/3), and Xq24-25 (2/3). CN gains were found at 13q34 (2/3). Ten patients with available follow up information were alive and without disease progression, after a mean follow-up of 28 months (1 to 112 months). HOT is a tumor with unique morphology and its IHC profile appears mostly consistent. HOT should be considered as an emerging renal entity because it does not meet the diagnostic criteria for other recognized eosinophilic renal tumors, such as oncocytoma, chromophobe renal cell carcinoma (RCC), TFE3 and TFEB RCC, SDH-deficient RCC, and eosinophilic solid and cystic RCC.
- Klíčová slova
- Chromophobe renal cell carcinoma, High grade, Hybrid, Immunohistochemistry, Kidney, Molecular biology, Oncocytic, Oncocytoma,
- MeSH
- chromozomální aberace MeSH
- diagnostické techniky molekulární MeSH
- dospělí MeSH
- imunohistochemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádory ledvin genetika patologie MeSH
- oxyfilní adenom genetika patologie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery MeSH
Renal cell carcinomas with t(6;11) chromosome translocation involving the TFEB gene are indolent neoplasms which often occur in young patients. In this study, we report seven cases of renal cell carcinoma with TFEB rearrangement, two of whom had histologically proven metastasis. Patients (4F, 3M) ranged in age from 19 to 55 years (mean 37). One patient developed paratracheal and pleural metastases 24 months after surgery and died of disease after 46 months; another one recurred with neoplastic nodules in the perinephric fat and pelvic soft tissue. Histologically, either cytological or architectural appearance was peculiar in each case whereas one tumor displayed the typical biphasic morphology. By immunohistochemistry, all tumors labelled for cathepsin K, Melan-A and CD68 (KP1 clone). HMB45 and PAX8 staining were detected in six of seven tumors. All tumors were negative for CD68 (PG-M1 clone), CKAE1-AE3, CK7, CAIX, and AMACR. Seven pure epithelioid PEComa/epithelioid angiomyolipomas, used as control, were positive for cathepsin K, melanocytic markers, and CD68 (PG-M1 and KP1) and negative for PAX8. Fluorescence in situ hybridization results showed the presence of TFEB gene translocation in all t(6;11) renal cell carcinomas with a high frequency of split TFEB fluorescent signals (mean 74%). In the primary and metastatic samples of the two aggressive tumors, increased gene copy number was observed (3-5 fluorescent signals per neoplastic nuclei) with a concomitant increased number of CEP6. Review of the literature revealed older age and larger tumor size as correlating with aggressive behavior in these neoplasms. In conclusion, we present the clinical, morphological and molecular features of seven t(6;11) renal cell carcinomas, two with histologically demonstrated metastasis. We report the high frequency of split signals by FISH in tumors with t(6;11) chromosomal rearrangement and the occurrence of TFEB gene copy number gains in the aggressive cases, analyzing either the primary or metastatic tumor. Finally, we demonstrate the usefulness of CD68 (PG-M1) immunohistochemical staining in distinguishing t(6;11) renal cell carcinoma from pure epithelioid PEComa/epithelioid angiomyolipoma.
- MeSH
- angiomyolipom chemie patologie MeSH
- antigeny diferenciační myelomonocytární analýza MeSH
- CD antigeny analýza MeSH
- diferenciální diagnóza MeSH
- dospělí MeSH
- hybridizace in situ fluorescenční MeSH
- imunohistochemie MeSH
- karcinom z renálních buněk chemie genetika sekundární MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 11 genetika MeSH
- lidské chromozomy, pár 6 genetika MeSH
- nádorové biomarkery analýza MeSH
- nádory ledvin chemie genetika patologie MeSH
- nádory z perivaskulárních epiteloidních buněk chemie patologie MeSH
- transkripční faktory BHLH-Zip genetika MeSH
- translokace genetická MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny diferenciační myelomonocytární MeSH
- CD antigeny MeSH
- CD68 antigen, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- TFEB protein, human MeSH Prohlížeč
- transkripční faktory BHLH-Zip MeSH