Nejvíce citovaný článek - PubMed ID 22898692
Radiomic features are usually used to predict target variables such as the absence or presence of a disease, treatment response, or time to symptom progression. One of the potential clinical applications is in patients with Parkinson's disease. Robust radiomic features for this specific imaging method have not yet been identified, which is necessary for proper feature selection. Thus, we are assessing the robustness of radiomic features in dopamine transporter imaging (DaT). For this study, we made an anthropomorphic head phantom with tissue heterogeneity using a personal 3D printer (polylactide 82% infill); the bone was subsequently reproduced with plaster. A surgical cotton ball with radiotracer (123I-ioflupane) was inserted. Scans were performed on the two-detector hybrid camera with acquisition parameters corresponding to international guidelines for DaT single photon emission tomography (SPECT). Reconstruction of SPECT was performed on a clinical workstation with iterative algorithms. Open-source LifeX software was used to extract 134 radiomic features. Statistical analysis was made in RStudio using the intraclass correlation coefficient (ICC) and coefficient of variation (COV). Overall, radiomic features in different reconstruction parameters showed a moderate reproducibility rate (ICC = 0.636, p <0.01). Assessment of ICC and COV within CT attenuation correction (CTAC) and non-attenuation correction (NAC) groups and within particular feature classes showed an excellent reproducibility rate (ICC > 0.9, p < 0.01), except for an intensity-based NAC group, where radiomic features showed a good repeatability rate (ICC = 0.893, p <0.01). By our results, CTAC becomes the main threat to feature stability. However, many radiomic features were sensitive to the selected reconstruction algorithm irrespectively to the attenuation correction. Radiomic features extracted from DaT-SPECT showed moderate to excellent reproducibility rates. These results make them suitable for clinical practice and human studies, but awareness of feature selection should be held, as some radiomic features are more robust than others.
- MeSH
- jednofotonová emisní výpočetní tomografie * MeSH
- lidé MeSH
- nortropany * MeSH
- počítačové zpracování obrazu * metody MeSH
- radiomika MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ioflupane MeSH Prohlížeč
- nortropany * MeSH
This literature research had two main objectives. The first objective was to quantify how frequently artificial intelligence (AI) was utilized in dental literature from 2011 until 2021. The second objective was to distinguish the focus of such publications; in particular, dental field and topic. The main inclusion criterium was an original article or review in English focused on dental utilization of AI. All other types of publications or non-dental or non-AI-focused were excluded. The information sources were Web of Science, PubMed, Scopus, and Google Scholar, queried on 19 April 2022. The search string was "artificial intelligence" AND (dental OR dentistry OR tooth OR teeth OR dentofacial OR maxillofacial OR orofacial OR orthodontics OR endodontics OR periodontics OR prosthodontics). Following the removal of duplicates, all remaining publications were returned by searches and were screened by three independent operators to minimize the risk of bias. The analysis of 2011-2021 publications identified 4413 records, from which 1497 were finally selected and calculated according to the year of publication. The results confirmed a historically unprecedented boom in AI dental publications, with an average increase of 21.6% per year over the last decade and a 34.9% increase per year over the last 5 years. In the achievement of the second objective, qualitative assessment of dental AI publications since 2021 identified 1717 records, with 497 papers finally selected. The results of this assessment indicated the relative proportions of focal topics, as follows: radiology 26.36%, orthodontics 18.31%, general scope 17.10%, restorative 12.09%, surgery 11.87% and education 5.63%. The review confirms that the current use of artificial intelligence in dentistry is concentrated mainly around the evaluation of digital diagnostic methods, especially radiology; however, its implementation is expected to gradually penetrate all parts of the profession.
- Klíčová slova
- artificial intelligence, deep learning, dentistry, endodontics, evidence-based practice, forensic odontology, maxillofacial surgery, orthodontics, periodontics, prosthodontics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rationale: The management of indeterminate pulmonary nodules (IPNs) remains challenging, resulting in invasive procedures and delays in diagnosis and treatment. Strategies to decrease the rate of unnecessary invasive procedures and optimize surveillance regimens are needed.Objectives: To develop and validate a deep learning method to improve the management of IPNs.Methods: A Lung Cancer Prediction Convolutional Neural Network model was trained using computed tomography images of IPNs from the National Lung Screening Trial, internally validated, and externally tested on cohorts from two academic institutions.Measurements and Main Results: The areas under the receiver operating characteristic curve in the external validation cohorts were 83.5% (95% confidence interval [CI], 75.4-90.7%) and 91.9% (95% CI, 88.7-94.7%), compared with 78.1% (95% CI, 68.7-86.4%) and 81.9 (95% CI, 76.1-87.1%), respectively, for a commonly used clinical risk model for incidental nodules. Using 5% and 65% malignancy thresholds defining low- and high-risk categories, the overall net reclassifications in the validation cohorts for cancers and benign nodules compared with the Mayo model were 0.34 (Vanderbilt) and 0.30 (Oxford) as a rule-in test, and 0.33 (Vanderbilt) and 0.58 (Oxford) as a rule-out test. Compared with traditional risk prediction models, the Lung Cancer Prediction Convolutional Neural Network was associated with improved accuracy in predicting the likelihood of disease at each threshold of management and in our external validation cohorts.Conclusions: This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low- or high-risk categories in more than a third of cancers and benign nodules when compared with conventional risk models, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.
- Klíčová slova
- computer-aided image analysis, early detection, lung cancer, neural networks, risk stratification,
- MeSH
- algoritmy MeSH
- deep learning * MeSH
- lidé MeSH
- mnohočetné plicní uzly diagnostické zobrazování MeSH
- nádory plic diagnostické zobrazování epidemiologie patofyziologie MeSH
- neuronové sítě MeSH
- počítačová rentgenová tomografie metody MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Spojené státy americké epidemiologie MeSH