Nejvíce citovaný článek - PubMed ID 23043911
Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards
Studying bacterial population diversity is important to understand healthcare associated infections' epidemiology and has a significant impact on dealing with multidrug resistant bacterial outbreaks. We characterised the extended-spectrum beta-lactamase producing K. pneumoniae (ESBLp KPN) population in our hospital using mini-MLST. Then we used whole genome sequencing (WGS) to compare selected isolates belonging to the most prevalent melting types (MelTs) and the colonization/infection pair isolates collected from one patient to study the ESBLp KPN population's genetic diversity. A total of 922 ESBLp KPN isolates collected between 7/2016 and 5/2018 were divided into 38 MelTs using mini-MLST with only 6 MelTs forming 82.8% of all isolates. For WGS, 14 isolates from the most prominent MelTs collected in the monitored period and 10 isolates belonging to the same MelTs collected in our hospital in 2014 were randomly selected. Resistome, virulome and ST were MelT specific and stable over time. A maximum of 23 SNV per core genome and 58 SNV per core and accessory genome were found. To determine the SNV relatedness cut-off values, 22 isolates representing colonization/infection pair samples obtained from 11 different patients were analysed by WGS with a maximum of 22 SNV in the core genome and 40 SNV in the core and accessory genome within pairs. The mini-MLST showed its potential for real-time epidemiology in clinical practice. However, for outbreak evaluation in a low diversity bacterial population, mini-MLST should be combined with more sensitive methods like WGS. Our findings showed there were only minimal differences within the core and accessory genome in the low diversity hospital population and gene based SNV analysis does not have enough discriminatory power to differentiate isolate relatedness. Thus, intergenic regions and mobile elements should be incorporated into the analysis scheme to increase discriminatory power.
- MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika metabolismus MeSH
- dítě MeSH
- DNA bakterií genetika MeSH
- dospělí MeSH
- infekce bakteriemi rodu Klebsiella enzymologie epidemiologie genetika mikrobiologie MeSH
- infekce spojené se zdravotní péčí enzymologie epidemiologie genetika mikrobiologie MeSH
- Klebsiella pneumoniae enzymologie genetika izolace a purifikace MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- multilokusová sekvenční typizace * MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- sekvenování celého genomu * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- DNA bakterií MeSH
Escherichia coli sequence type 131 (ST131) is currently one of the leading causes of multidrug-resistant extraintestinal infections globally. Here, we analyzed the phenotypic and genotypic characteristics of 169 ST131 isolates from various sources (wildlife, wastewater, companion animals, community, and hospitals) to determine whether wildlife and the environment share similar strains with humans, supporting transmission of ST131 between different ecological niches. Susceptibility to 32 antimicrobials was tested by disc diffusion and broth microdilution. Antibiotic resistance genes, integrons, plasmid replicons, 52 virulence genes, and fimH-based subtypes were detected by PCR and DNA sequencing. Genomic relatedness was determined by pulsed-field gel electrophoresis (PFGE). The genetic context and plasmid versus chromosomal location of extended-spectrum beta-lactamase and AmpC beta-lactamase genes was determined by PCR and probe hybridization, respectively. The 169 ST131 study isolates segregated predominantly into blaCTX-M-15H30Rx (60%) and blaCTX-M-27H30R1 (25%) subclones. Within each subclone, isolates from different source groups were categorized into distinct PFGE clusters; genotypic characteristics were fairly well conserved within each major PFGE cluster. Irrespective of source, the blaCTX-M-15H30Rx isolates typically exhibited virotype A (89%), an F2:A1:B- replicon (84%), and a 1.7-kb class 1 integron (92%) and had diverse structures upstream of the blaCTX-M region. In contrast, the blaCTX-M-27H30R1 isolates typically exhibited virotype C (86%), an F1:A2:B20 replicon (76%), and a conserved IS26-ΔISEcp1-blaCTX-M-like structure. Despite considerable overall genetic diversity, our data demonstrate significant commonality between E. coli ST131 isolates from diverse environments, supporting transmission between different sources, including humans, environment, and wildlife.
- Klíčová slova
- ESBL, Escherichia coli ST131, environment, nosocomial and community-acquired infections, virulence, wildlife,
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy genetika MeSH
- Escherichia coli účinky léků genetika MeSH
- infekce vyvolané Escherichia coli genetika mikrobiologie MeSH
- infekce získané v komunitě genetika mikrobiologie MeSH
- lidé MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- plazmidy genetika MeSH
- proteiny z Escherichia coli genetika MeSH
- pulzní gelová elektroforéza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- antibakteriální látky MeSH
- beta-laktamasy MeSH
- proteiny z Escherichia coli MeSH
Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6')-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates sharing 100% relatedness and originating from different areas were identified. In conclusion, our study identified PMQR genes in E. coli isolates in all areas studied, including highly virulent multiresistant clones such as ST131 producing CTX-M-15 beta-lactamases.
- Klíčová slova
- Escherichia coli, MLST, PFGE, animals, human, quinolone resistance, wastewater,
- Publikační typ
- časopisecké články MeSH
Extended-spectrum-beta-lactamase (ESBL)-producing, AmpC beta-lactamase-producing, and plasmid-mediated quinolone resistance (PMQR) gene-positive strains of Escherichia coli were investigated in wintering rooks (Corvus frugilegus) from eight European countries. Fecal samples (n = 1,073) from rooks wintering in the Czech Republic, France, Germany, Italy, Poland, Serbia, Spain, and Switzerland were examined. Resistant isolates obtained from selective cultivation were screened for ESBL, AmpC, and PMQR genes by PCR and sequencing. Pulsed-field gel electrophoresis and multilocus sequence typing were performed to reveal their clonal relatedness. In total, from the 1,073 samples, 152 (14%) cefotaxime-resistant E. coli isolates and 355 (33%) E. coli isolates with reduced susceptibility to ciprofloxacin were found. Eighty-two (54%) of these cefotaxime-resistant E. coli isolates carried the following ESBL genes: blaCTX-M-1 (n = 39 isolates), blaCTX-M-15 (n = 25), blaCTX-M-24 (n = 4), blaTEM-52 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-55 (n = 2), blaSHV-12 (n = 2), blaCTX-M-8 (n = 1), blaCTX-M-25 (n = 1), blaCTX-M-28 (n = 1), and an unspecified gene (n = 1). Forty-seven (31%) cefotaxime-resistant E. coli isolates carried the blaCMY-2 AmpC beta-lactamase gene. Sixty-two (17%) of the E. coli isolates with reduced susceptibility to ciprofloxacin were positive for the PMQR genes qnrS1 (n = 54), qnrB19 (n = 4), qnrS1 and qnrB19 (n = 2), qnrS2 (n = 1), and aac(6')-Ib-cr (n = 1). Eleven isolates from the Czech Republic (n = 8) and Serbia (n = 3) were identified to be CTX-M-15-producing E. coli clone B2-O25b-ST131 isolates. Ninety-one different sequence types (STs) among 191 ESBL-producing, AmpC-producing, and PMQR gene-positive E. coli isolates were determined, with ST58 (n = 15), ST10 (n = 14), and ST131 (n = 12) predominating. The widespread occurrence of highly diverse ESBL- and AmpC-producing and PMQR gene-positive E. coli isolates, including the clinically important multiresistant ST69, ST95, ST117, ST131, and ST405 clones, was demonstrated in rooks wintering in various European countries.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální geny MeSH
- bakteriální léková rezistence * MeSH
- cefalosporiny farmakologie MeSH
- Escherichia coli klasifikace účinky léků genetika izolace a purifikace MeSH
- fluorochinolony farmakologie MeSH
- genotyp MeSH
- multilokusová sekvenční typizace MeSH
- plazmidy MeSH
- polymerázová řetězová reakce MeSH
- pulzní gelová elektroforéza MeSH
- vrány mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- antibakteriální látky MeSH
- cefalosporiny MeSH
- fluorochinolony MeSH
The entire plasmid content of a multidrug-resistant, CTX-M-15-producing Klebsiella pneumoniae ST416 clone was investigated. Two FII(K) plasmids, pKDO1 (127 kb) and pKPN-CZ (207 kb), were identified and found to carry a formidable set of genes conferring resistance to toxic compounds, metals, and antimicrobial drugs and exhibiting novel features putatively associated with adaptation and fitness of the bacterium in the human host.
- MeSH
- antiinfekční látky farmakologie MeSH
- bakteriální proteiny biosyntéza metabolismus MeSH
- beta-laktamasy biosyntéza metabolismus MeSH
- infekce bakteriemi rodu Klebsiella farmakoterapie MeSH
- Klebsiella pneumoniae účinky léků genetika MeSH
- kovy farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- molekulární sekvence - údaje MeSH
- plazmidy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- antiinfekční látky MeSH
- bakteriální proteiny MeSH
- beta-lactamase CTX-M-15 MeSH Prohlížeč
- beta-laktamasy MeSH
- kovy MeSH
- Qnr protein, Klebsiella pneumoniae MeSH Prohlížeč