Nejvíce citovaný článek - PubMed ID 23181467
Systems insight into the spore germination of Streptomyces coelicolor
Spore awakening is a series of actions that starts with purely physical processes and continues via the launching of gene expression and metabolic activities, eventually achieving a vegetative phase of growth. In spore-forming microorganisms, the germination process is controlled by intra- and inter-species communication. However, in the Streptomyces clade, which is capable of developing a plethora of valuable compounds, the chemical signals produced during germination have not been systematically studied before. Our previously published data revealed that several secondary metabolite biosynthetic genes are expressed during germination. Therefore, we focus here on the secondary metabolite production during this developmental stage. Using high-performance liquid chromatography-mass spectrometry, we found that the sesquiterpenoid antibiotic albaflavenone, the polyketide germicidin A, and chalcone are produced during germination of the model streptomycete, S. coelicolor. Interestingly, the last two compounds revealed an inhibitory effect on the germination process. The secondary metabolites originating from the early stage of microbial growth may coordinate the development of the producer (quorum sensing) and/or play a role in competitive microflora repression (quorum quenching) in their nature environments.
- Klíčová slova
- Streptomyces, albaflavenone, cell signaling, chalcone, germicidin, secondary metabolism, spore germination,
- Publikační typ
- časopisecké články MeSH
The complex development undergone by Streptomyces encompasses transitions from vegetative mycelial forms to reproductive aerial hyphae that differentiate into chains of single-celled spores. Whereas their mycelial life - connected with spore formation and antibiotic production - is deeply investigated, spore germination as the counterpoint in their life cycle has received much less attention. Still, germination represents a system of transformation from metabolic zero point to a new living lap. There are several aspects of germination that may attract our attention: (1) Dormant spores are strikingly well-prepared for the future metabolic restart; they possess stable transcriptome, hydrolytic enzymes, chaperones, and other required macromolecules stabilized in a trehalose milieu; (2) Germination itself is a specific sequence of events leading to a complete morphological remodeling that include spore swelling, cell wall reconstruction, and eventually germ tube emergences; (3) Still not fully unveiled are the strategies that enable the process, including a single cell's signal transduction and gene expression control, as well as intercellular communication and the probability of germination across the whole population. This review summarizes our current knowledge about the germination process in Streptomyces, while focusing on the aforementioned points.
- Klíčová slova
- Streptomyces, cell wall, dormancy, gene expression, germination, metabolism, signaling, spore,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
cis-Antisense RNAs (asRNAs) provide very simple and effective gene expression control due to the perfect complementarity between regulated and regulatory transcripts. In Streptomyces, the antibiotic-producing clade, the antisense control system is not yet understood, although it might direct the organism's complex development. Initial studies in Streptomyces have found a number of asRNAs. Apart from this, hundreds of mRNAs have been shown to bind RNase III, the double strand-specific endoribonuclease. In this study, we tested 17 mRNAs that have been previously co-precipitated with RNase III for antisense expression. Our RACE mapping showed that all of these mRNAs possess cognate asRNA. Additional tests for antisense expression uncovered as-adpA, as-rnc, as3983, as-sigB, as-sigH, and as-sigR RNAs. Northern blots detected the expression profiles of 18 novel transcripts. Noteworthy, we also found that only a minority of asRNAs respond to the absence of RNase III enzyme by increasing their cellular levels. Our findings suggest that antisense expression is widespread in Streptomyces, including genes of such important developmental regulators, as AdpA, RNase III, and sigma factors.
- Klíčová slova
- RNase III, Streptomyces, antibiotics, cis-antisense RNA, gene expression control,
- Publikační typ
- časopisecké články MeSH
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
- MeSH
- genetická transkripce MeSH
- genové regulační sítě * MeSH
- kinetika MeSH
- modely genetické * MeSH
- počítačová simulace MeSH
- regulace genové exprese u bakterií * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- sigma faktor metabolismus MeSH
- spory bakteriální genetika růst a vývoj metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- Streptomyces coelicolor genetika metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- sigma faktor MeSH
Streptomycetes have been studied mostly as producers of secondary metabolites, while the transition from dormant spores to an exponentially growing culture has largely been ignored. Here, we focus on a comparative analysis of fluorescently and radioactively labeled proteome and microarray acquired transcriptome expressed during the germination of Streptomyces coelicolor. The time-dynamics is considered, starting from dormant spores through 5.5 hours of growth with 13 time points. Time series of the gene expressions were analyzed using correlation, principal components analysis and an analysis of coding genes utilization. Principal component analysis was used to identify principal kinetic trends in gene expression and the corresponding genes driving S. coelicolor germination. In contrast with the correlation analysis, global trends in the gene/protein expression reflected by the first principal components showed that the prominent patterns in both the protein and the mRNA domains are surprisingly well correlated. Analysis of the number of expressed genes identified functional groups activated during different time intervals of the germination.
- MeSH
- analýza hlavních komponent MeSH
- energetický metabolismus genetika MeSH
- fenotyp MeSH
- fyziologický stres genetika MeSH
- genové regulační sítě MeSH
- metabolické sítě a dráhy MeSH
- proteom * MeSH
- regulace genové exprese u bakterií * MeSH
- spory bakteriální genetika metabolismus MeSH
- Streptomyces coelicolor genetika metabolismus ultrastruktura MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom * MeSH