Most cited article - PubMed ID 23235706
Sperm competition in tropical versus temperate zone birds
INTRODUCTION: Decreasing biotic diversity with increasing latitude is an almost universal macroecological pattern documented for a broad range of taxa, however, there have been few studies focused on changes in gut microbiota (GM) across climatic zones. METHODS: Using 16S rRNA amplicon profiling, we analyzed GM variation between temperate (Czechia) and tropical (Cameroon) populations of 99 passerine bird species and assessed GM similarity of temperate species migrating to tropical regions with that of residents/short-distance migrants and tropical residents. Our study also considered the possible influence of diet on GM. RESULTS: We observed no consistent GM diversity differences between tropical and temperate species. In the tropics, GM composition varied substantially between dry and rainy seasons and only a few taxa exhibited consistent differential abundance between tropical and temperate zones, irrespective of migration behavior and seasonal GM changes. During the breeding season, trans-Saharan migrant GM diverged little from species not overwintering in the tropics and did not show higher similarity to tropical passerines than temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and converged with other temperate species during the breeding season. Diet had a slight effect on GM composition of tropical species, but no effect on GM of temperate hosts. DISCUSSION: Consequently, our results demonstrate extensive passerine GM plasticity, the dominant role of environmental factors in its composition and limited effect of diet.
- Keywords
- climatic zones, faecal microbiome, gastrointestinal tract, metabarcoding, passerine birds,
- Publication type
- Journal Article MeSH
Tropical bird species are characterized by a comparatively slow pace of life, being predictably different from their temperate zone counterparts in their investments in growth, survival and reproduction. In birds, the development of functional plumage is often considered energetically demanding investment, with consequences on individual fitness and survival. However, current knowledge of interspecific variation in feather growth patterns is mostly based on species of the northern temperate zone. We evaluated patterns in tail feather growth rates (FGR) and feather quality (stress-induced fault bar occurrence; FBO), using 1518 individuals of 167 species and 39 passerine families inhabiting Afrotropical and northern temperate zones. We detected a clear difference in feather traits between species breeding in the temperate and tropical zones, with the latter having significantly slower FGR and three times higher FBO. Moreover, trans-Saharan latitudinal migrants resembled temperate zone residents in that they exhibited a comparatively fast FGR and low FBO, despite sharing moulting environments with tropical species. Our results reveal convergent latitudinal shifts in feather growth investments (latitudinal syndrome) across unrelated passerine families and underscore the importance of breeding latitude in determining cross-species variation in key avian life-history traits.
- Keywords
- comparative analysis, fault bars, life-history, long-distance migration, pace-of-life syndromes, ptilochronology,
- MeSH
- Breeding MeSH
- Humans MeSH
- Passeriformes * MeSH
- Feathers MeSH
- Reproduction MeSH
- Molting * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Female promiscuity is highly variable among birds, and particularly among songbirds. Comparative work has identified several patterns of covariation with social, sexual, ecological and life history traits. However, it is unclear whether these patterns reflect causes or consequences of female promiscuity, or if they are byproducts of some unknown evolutionary drivers. Moreover, factors that explain promiscuity at the deep nodes in the phylogenetic tree may be different from those important at the tips, i.e. among closely related species. Here we examine the relationships between female promiscuity and a broad set of predictor variables in a comprehensive data set (N = 202 species) of Passerides songbirds, which is a highly diversified infraorder of the Passeriformes exhibiting significant variation in female promiscuity. RESULTS: Female promiscuity was highly variable in all major clades of the Passerides phylogeny and also among closely related species. We found several significant associations with female promiscuity, albeit with fairly small effect sizes (all R2 ≤ 0.08). More promiscuous species had: 1) less male parental care, particularly during the early stages of the nesting cycle (nest building and incubation), 2) more short-term pair bonds, 3) greater degree of sexual dichromatism, primarily because females were drabber, 4) more migratory behaviour, and 5) stronger pre-mating sexual selection. In a multivariate model, however, the effect of sexual selection disappeared, while the other four variables showed additive effects and together explained about 16% of the total variance in female promiscuity. Female promiscuity showed no relationship with body size, life history variation, latitude or cooperative breeding. CONCLUSIONS: We found that multiple traits were associated with female promiscuity, but these associations were generally weak. Some traits, such as reduced parental care in males and more cryptic plumage in females, might even be responses to, rather than causes of, variation in female promiscuity. Hence, the high variation in female promiscuity among Passerides species remains enigmatic. Female promiscuity seems to be a rapidly evolving trait that often diverges between species with similar ecologies and breeding systems. A future challenge is therefore to understand what drives within-lineage variation in female promiscuity over microevolutionary time scales.
- Keywords
- Extrapair paternity, Life history, Mating system, Pair bond, Parental care, Sexual selection,
- MeSH
- Biological Evolution * MeSH
- Breeding MeSH
- Ecology MeSH
- Phylogeny MeSH
- Pair Bond MeSH
- Sexual Behavior, Animal * MeSH
- Body Size MeSH
- Songbirds genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
- MeSH
- Species Specificity MeSH
- Genetic Variation MeSH
- Genetic Drift MeSH
- Evolution, Molecular MeSH
- Sex Chromosomes genetics MeSH
- Mating Preference, Animal * MeSH
- Spermatozoa cytology MeSH
- Gene Flow MeSH
- Genetic Speciation MeSH
- Songbirds genetics physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Post-copulatory sexual selection has been shown to shape morphology of male gametes. Both directional and stabilizing selection on sperm phenotype have been documented in vertebrates in response to sexual promiscuity. METHODOLOGY: Here we investigated the degree of variance in apical hook length and tail length in six taxa of murine rodents. CONCLUSIONS: Tail sperm length and apical hook length were positively associated with relative testis mass, our proxy for levels of sperm competition, thus indicating directional post-copulatory selection on sperm phenotypes. Moreover, our study shows that increased levels of sperm competition lead to the reduction of variance in the hook length, indicating stabilizing selection. Hence, the higher risk of sperm competition affects increasing hook length together with decreasing variance in the hook length. Species-specific post-copulatory sexual selection likely optimizes sperm morphology.
- MeSH
- Sperm Tail * MeSH
- Sperm Head * MeSH
- Mice MeSH
- Selection, Genetic MeSH
- Spermatozoa cytology physiology MeSH
- Testis anatomy & histology MeSH
- Organ Size MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH