Most cited article - PubMed ID 23305350
Corynebacterium glutamicum promoters: a practical approach
The sigma H (σΗ) and sigma E (σE) subunits of Corynebacterium glutamicum RNA polymerase belong to Group 4 of sigma factors, also called extracytoplasmic function (ECF) sigma factors. Genes of the C. glutamicum σΗ regulon that are involved in heat and oxidative stress response have already been defined, whereas the genes of the σE regulon, which is involved in cell surface stress response, have not been explored until now. Using the C. glutamicum RES167 strain and its derivative C. glutamicum ΔcseE with a deletion in the anti-σΕ gene, differential gene expression was analyzed by RNA sequencing. We found 296 upregulated and 398 downregulated genes in C. glutamicum ΔcseE compared to C. glutamicum RES167. To confirm the functional link between σΕ and the corresponding promoters, we tested selected promoters using the in vivo two-plasmid system with gfpuv as a reporter gene and by in vitro transcription. Analyses with RNAP+σΗ and RNAP+σΕ, which were previously shown to recognize similar promoters, proved that the σΗ and σE regulons significantly overlap. The σE-controlled genes were found to be involved for example in protein quality control (dnaK, dnaJ2, clpB, and clpC), the regulation of Clp proteases (clgR), and membrane integrity maintenance. The single-promoter analyses with σΗ and σΕ revealed that there are two groups of promoters: those which are exclusively σΗ-specific, and the other group of promoters, which are σΗ/σE-dependent. No exclusively σE-dependent promoter was detected. We defined the consensus sequences of exclusively σΗ-regulated promotors to be -35 GGAAt and - 10 GTT and σΗ/σE-regulated promoters to be -35 GGAAC and - 10 cGTT. Fifteen genes were found to belong to the σΗ/σΕ regulon. Homology modeling showed that there is a specific interaction between Met170 in σΗ and the nucleotides -31 and - 30 within the non-coding strand (AT or CT) of the σΗ-dependent promoters. In σE, Arg185 was found to interact with the nucleotides GA at the same positions in the σE-dependent promoters.
- Keywords
- Corynebacterium, RNA-seq, consensus sequence, promoter, regulon, sigma factor, stress, transcriptional start site,
- Publication type
- Journal Article MeSH
Corynebacterium glutamicum is an important industrial producer of various amino acids and other metabolites. The C. glutamicum genome encodes seven sigma subunits (factors) of RNA polymerase: the primary sigma factor SigA (σA), the primary-like σB and five alternative sigma factors (σC, σD, σE, σH and σM). We have developed in vitro and in vivo methods to assign particular sigma factors to individual promoters of different classes. In vitro transcription assays and measurements of promoter activity using the overexpression of a single sigma factor gene and the transcriptional fusion of the promoter to the gfpuv reporter gene enabled us to reliably define the sigma factor dependency of promoters. To document the strengths of these methods, we tested examples of respective promoters for each C. glutamicum sigma factor. Promoters of the rshA (anti-sigma for σH) and trxB1 (thioredoxin) genes were found to be σH-dependent, whereas the promoter of the sigB gene (sigma factor σB) was σE- and σH-dependent. It was confirmed that the promoter of the cg2556 gene (iron-regulated membrane protein) is σC-dependent as suggested recently by other authors. The promoter of cmt1 (trehalose corynemycolyl transferase) was found to be clearly σD-dependent. No σM-dependent promoter was identified. The typical housekeeping promoter P2sigA (sigma factor σA) was proven to be σA-dependent but also recognized by σB. Similarly, the promoter of fba (fructose-1,6-bisphosphate aldolase) was confirmed to be σB-dependent but also functional with σA. The study provided demonstrations of the broad applicability of the developed methods and produced original data on the analyzed promoters.
- Keywords
- Corynebacterium glutamicum, In vitro transcription, Promoter, RNA polymerase, Sigma factor,
- Publication type
- Journal Article MeSH