Most cited article - PubMed ID 23786858
SCORE performance in Central and Eastern Europe and former Soviet Union: MONICA and HAPIEE results
AIMS: Impaired lung function has been strongly associated with cardiovascular disease (CVD) events. We aimed to assess the additive prognostic value of spirometry indices to the risk estimation of CVD events in Eastern European populations in this study. METHODS: We randomly selected 14,061 individuals with a mean age of 59 ± 7.3 years without a previous history of cardiovascular and pulmonary diseases from population registers in the Czechia, Poland, and Lithuania. Predictive values of standardised Z-scores of forced expiratory volume measured in 1 s (FEV1), forced vital capacity (FVC), and FEV1 divided by height cubed (FEV1/ht3) were tested. Cox proportional hazards models were used to estimate hazard ratios (HRs) of CVD events of various spirometry indices over the Framingham Risk Score (FRS) model. The model performance was evaluated using Harrell's C-statistics, likelihood ratio tests, and Bayesian information criterion. RESULTS: All spirometry indices had a strong linear relation with the incidence of CVD events (HR ranged from 1.10 to 1.12 between indices). The model stratified by FEV1/ht3 tertiles had a stronger link with CVD events than FEV1 and FVC. The risk of CVD event for the lowest vs. highest FEV1/ht3 tertile among people with low FRS was higher (HR: 2.35; 95% confidence interval: 1.96-2.81) than among those with high FRS. The addition of spirometry indices showed a small but statistically significant improvement of the FRS model. CONCLUSIONS: The addition of spirometry indices might improve the prediction of incident CVD events particularly in the low-risk group. FEV1/ht3 is a more sensitive predictor compared to other spirometry indices.
- Keywords
- cardiovascular disease, cohort studies, mortality, pulmonary function test, risk prediction model,
- Publication type
- Journal Article MeSH
AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.
- Keywords
- Cardiovascular diseases, Eastern Europe, Psychosocial deprivation, Risk prediction, Sensitivity and specificity, Socioeconomic factors,
- MeSH
- Risk Assessment MeSH
- Cardiovascular Diseases * epidemiology MeSH
- Cohort Studies MeSH
- Humans MeSH
- Prospective Studies MeSH
- Heart Disease Risk Factors MeSH
- Risk Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Czech Republic MeSH
- Poland MeSH
- Russia MeSH
BACKGROUND AND OBJECTIVE: The SCORE scale predicts the 10-year risk of fatal atherosclerotic cardiovascular disease (CVD), based on conventional risk factors. The high-risk version of SCORE is recommended for Central and Eastern Europe and former Soviet Union (CEE/FSU), due to high CVD mortality rates in these countries. Given the pronounced social gradient in cardiovascular mortality in the region, it is important to consider social factors in the CVD risk prediction. We investigated whether adding education and marital status to SCORE benefits its prognostic performance in two sets of population-based CEE/FSU cohorts. METHODS: The WHO MONICA (MONItoring of trends and determinants in CArdiovascular disease) cohorts from the Czech Republic, Poland (Warsaw and Tarnobrzeg), Lithuania (Kaunas), and Russia (Novosibirsk) were followed from the mid-1980s (577 atherosclerotic CVD deaths among 14,969 participants with non-missing data). The HAPIEE (Health, Alcohol, and Psychosocial factors In Eastern Europe) study follows Czech, Polish (Krakow), and Russian (Novosibirsk) cohorts from 2002-05 (395 atherosclerotic CVD deaths in 19,900 individuals with non-missing data). RESULTS: In MONICA and HAPIEE, the high-risk SCORE ≥5% at baseline strongly and significantly predicted fatal CVD both before and after adjustment for education and marital status. After controlling for SCORE, lower education and non-married status were significantly associated with CVD mortality in some samples. SCORE extension by these additional risk factors only slightly improved indices of calibration and discrimination (integrated discrimination improvement <5% in men and ≤1% in women). CONCLUSION: Extending SCORE by education and marital status failed to substantially improve its prognostic performance in population-based CEE/FSU cohorts.
- MeSH
- Atherosclerosis epidemiology mortality MeSH
- Adult MeSH
- Cardiovascular Diseases epidemiology mortality MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Marital Status MeSH
- Prognosis MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Socioeconomic Factors MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Russia MeSH
- Europe, Eastern MeSH