Most cited article - PubMed ID 23831741
Comparison of Long-Evans and Wistar rats in sensitivity to central cholinergic blockade with scopolamine in two spatial tasks: an active place avoidance and the Morris water maze
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
- Keywords
- acetylcholine, behavior, biperiden, learning, memory, receptor, rodents, scopolamine,
- Publication type
- Journal Article MeSH
- Review MeSH
RATIONALE: Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. OBJECTIVES: We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. METHODS: We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. RESULTS: Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. CONCLUSIONS: In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.
- Keywords
- Acetylcholinesterase inhibitor *, Human *, Rat *, Scopolamine *, Spatial orientation *,
- MeSH
- Muscarinic Antagonists pharmacology MeSH
- Maze Learning drug effects MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Donepezil MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Indans pharmacology MeSH
- Rats MeSH
- Humans MeSH
- Young Adult MeSH
- Piperidines pharmacology MeSH
- Rats, Wistar MeSH
- Spatial Navigation drug effects MeSH
- Scopolamine pharmacology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Rats MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Muscarinic Antagonists MeSH
- Cholinesterase Inhibitors MeSH
- Donepezil MeSH
- Indans MeSH
- Piperidines MeSH
- Scopolamine MeSH
OBJECTIVES: Cognitive deficit is considered to be a characteristic feature of schizophrenia disorder. A similar cognitive dysfunction was demonstrated in animal models of schizophrenia. However, the poor comparability of methods used to assess cognition in animals and humans could be responsible for low predictive validity of current animal models. In order to assess spatial abilities in schizophrenia and compare our results with the data obtained in animal models, we designed a virtual analog of the Morris water maze (MWM), the virtual Four Goals Navigation (vFGN) task. METHODS: Twenty-nine patients after the first psychotic episode with schizophrenia symptoms and a matched group of healthy volunteers performed the vFGN task. They were required to find and remember four hidden goal positions in an enclosed virtual arena. The task consisted of two parts. The Reference memory (RM) session with a stable goal position was designed to test spatial learning. The Delayed-matching-to-place (DMP) session presented a modified working memory protocol designed to test the ability to remember a sequence of three hidden goal positions. RESULTS: Data obtained in the RM session show impaired spatial learning in schizophrenia patients compared to the healthy controls in pointing and navigation accuracy. The DMP session showed impaired spatial memory in schizophrenia during the recall of spatial sequence and a similar deficit in spatial bias in the probe trials. The pointing accuracy and the quadrant preference showed higher sensitivity toward the cognitive deficit than the navigation accuracy. Direct navigation to the goal was affected by sex and age of the tested subjects. The age affected spatial performance only in healthy controls. CONCLUSIONS: Despite some limitations of the study, our results correspond well with the previous studies in animal models of schizophrenia and support the decline of spatial cognition in schizophrenia, indicating the usefulness of the vFGN task in comparative research.
- Keywords
- Morris Water Maze (MWM), cognitive deficit, learning and memory, psychotic disorders, schizophrenia, spatial behavior, spatial navigation, virtual reality environment,
- Publication type
- Journal Article MeSH