Nejvíce citovaný článek - PubMed ID 24177700
Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability
Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
- Klíčová slova
- ampicillin, bio-artificial polymeric system, chitosan, health-care associated infections, polyvinyl alcohol,
- MeSH
- ampicilin * chemie farmakologie MeSH
- antibakteriální látky * chemická syntéza chemie farmakologie MeSH
- chitosan * chemie farmakologie MeSH
- Escherichia coli růst a vývoj MeSH
- polyvinylalkohol * chemie farmakologie MeSH
- Staphylococcus aureus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin * MeSH
- antibakteriální látky * MeSH
- chitosan * MeSH
- polyvinylalkohol * MeSH
The effective and widely tested biocides: Benzalkonium chloride, bronopol, chitosan, chlorhexidine and irgasan were added in different concentrations to atelocollagen matrices. In order to assess how these antibacterial agents influence keratinocytes cell growth, cell viability and proliferation were determined by using MTT assay. Acquired data indicated a low toxicity by employing any of these chemical substances. Furthermore, cell viability and proliferation were comparatively similar to the samples where there were no biocides. It means that regardless of the agent, collagen-cell-attachment properties are not drastically affected by the incorporation of those biocides into the substrate. Therefore, these findings suggest that these atelocollagen substrates enhanced by the addition of one or more of these agents may render effectiveness against bacterial stains and biofilm formation, being the samples referred to herein as "antimicrobial substrates" a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.
- Publikační typ
- časopisecké články MeSH