Nejvíce citovaný článek - PubMed ID 24331154
Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial
Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen.
- Klíčová slova
- CAR T cells, MAGEA3, NY-ESO-1, immune checkpoint blockers, mutational load, synthetic long peptides, tumor neoantigens,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
- Klíčová slova
- ALL, acute lymphoblastic leukemia, AML, acute myeloid leukemia, CML, chronic myeloid leukemia, DAMP, damage-associated molecular pattern, EGFR, epidermal growth factor receptor, EOX, epirubicin plus oxaliplatin plus capecitabine, ER, endoplasmic reticulum, FDA, Food and Drug Administration, FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin, FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin, GEMOX, gemcitabine plus oxaliplatin, GM-CSF, granulocyte-macrophage colony-stimulating factor, HCC, hepatocellular carcinoma, ICD, immunogenic cell death, MM, multiple myeloma, NHL, non-Hodgkin's lymphoma, NSCLC, non-small cell lung carcinoma, TACE, transcatheter arterial chemoembolization, XELOX, capecitabine plus oxaliplatin, antigen-presenting cell, autophagy, damage-associated molecular pattern, dendritic cell, endoplasmic reticulum stress, mAb, monoclonal antibody, type I interferon,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH