Nejvíce citovaný článek - PubMed ID 24333643
Salicylanilide pyrazinoates inhibit in vitro multidrug-resistant Mycobacterium tuberculosis strains, atypical mycobacteria and isocitrate lyase
This study evaluates the antimycobacterial potential of novel "mutual" bioactive amides, combining pyridine-4-carbohydrazide (isoniazid, INH) with various antimicrobial agents (sulphonamides, 4-aminosalicylic acid, thiosemicarbazide, diphenyl (thio)ethers) via oxocarboxylic acids. The aim was to enhance activity against both drug-susceptible and multidrug-resistant (MDR) Mycobacterium tuberculosis and non-tuberculous strains, while overcoming drug resistance through dual-action mechanisms. Many derivatives exhibited potent antimycobacterial activity, with minimum inhibitory concentrations (MICs) as low as ≤0.25 μM, outperforming INH, especially diphenyl (thio)ethers and biphenyl analogues. Additionally, the compounds were effective against M. kansasii (MICs ≤1 μM) and inhibited MDR strains at higher concentrations (≥8 μM). The cytotoxicity assay indicated a favourable safety profile, with no significant haemolysis at 125 μM, and some compounds were even protective. Selectivity for mycobacteria was confirmed by low inhibition of Gram-positive bacteria and inactivity against Gram-negative bacteria or fungi, highlighting the potential for further development as antimycobacterial agents.
- Publikační typ
- časopisecké články MeSH
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
- Publikační typ
- časopisecké články MeSH
The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 μM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.
- Klíčová slova
- InhA, antimycobacterial activity, enzyme inhibition, esters, isoniazid, mechanism of action, mutual prodrugs,
- Publikační typ
- časopisecké články MeSH
A series of 116 small-molecule 1-hydroxynaphthalene-2-carboxanilides was designed based on the fragment-based approach and was synthesized according to the microwave-assisted protocol. The biological activity of all of the compounds was tested on human colon carcinoma cell lines including a deleted TP53 tumor suppressor gene. The mechanism of activity was studied according to the p53 status in the cell. Several compounds revealed a good to excellent activity that was similar to or better than the standard anticancer drugs. Some of these appeared to be more active against the p53 null cells than their wild-type counterparts. Intercalating the properties of these compounds could be responsible for their mechanism of action.
- MeSH
- apoptóza účinky léků MeSH
- DNA metabolismus MeSH
- doxorubicin farmakologie MeSH
- HCT116 buňky MeSH
- interkalátory farmakologie MeSH
- knihovny malých molekul chemie farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- naftoly chemická syntéza chemie farmakologie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie MeSH
- racionální návrh léčiv * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-naphthol MeSH Prohlížeč
- calf thymus DNA MeSH Prohlížeč
- DNA MeSH
- doxorubicin MeSH
- interkalátory MeSH
- knihovny malých molekul MeSH
- nádorový supresorový protein p53 MeSH
- naftoly MeSH
- protinádorové látky MeSH
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
- Klíčová slova
- acetylcholinesterase, butyrylcholinesterase, carbamate, enzyme inhibition, salicylanilide, thiocarbamate,
- MeSH
- acetylcholinesterasa chemie MeSH
- buňky Hep G2 MeSH
- butyrylcholinesterasa chemie MeSH
- cholinesterasové inhibitory chemie toxicita MeSH
- inhibiční koncentrace 50 MeSH
- katalytická doména MeSH
- lidé MeSH
- simulace molekulového dockingu MeSH
- thiokarbamáty chemie toxicita MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- thiokarbamáty MeSH