Nejvíce citovaný článek - PubMed ID 24508730
The inflammation present in acute respiratory distress syndrome (ARDS) and thereby associated injury to the alveolar-capillary membrane and pulmonary surfactant can potentiate respiratory failure. Even considering the high mortality rate of severe ARDS, glucocorticoids appear to be a reasonable treatment option along with an appropriate route of delivery to the distal lung. This study aimed to investigate the effect of budesonide therapy delivered intratracheally by high-frequency oscillatory ventilation (HFOV) on lung function and inflammation in severe ARDS. Adult New Zealand rabbits with respiratory failure (P/F<13.3 kPa) induced by intratracheal instillation of hydrochloric acid (HCl, 3 ml/kg, pH 1.5) followed by high tidal ventilation (VT 20 ml/kg) to mimic ventilator-induced lung injury (VILI) were treated with intratracheal bolus of budesonide (0.25 mg/kg, Pulmicort) delivered by HFOV (frequency 8 Hz, MAP 1 kPa, deltaP 0.9 kPa). Saline instead of HCl without VILI with HFOV delivered air bolus instead of therapy served as healthy control. All animals were subjected to lung-protective ventilation for 4 h, and respiratory parameters were monitored regularly. Postmortem, lung injury, wet-to-dry weight ratio, leukocyte shifts, and levels of cytokines in plasma and lung were evaluated. Budesonide therapy improved the lung function (P/F ratio, oxygenation index, and compliance), decreased the cytokine levels, reduced lung edema and neutrophils influx into the lung, and improved lung architecture in interstitial congestion, hyaline membrane, and atelectasis formation compared to untreated animals. This study indicates that HFOV delivered budesonide effectively ameliorated respiratory function, and attenuated acid-induced lung injury in a rabbit model of severe ARDS.
Radiation therapy is one of the most common treatment strategies for thorax malignancies. One of the considerable limitations of this therapy is its toxicity to normal tissue. The lung is the major dose-limiting organ for radiotherapy. That is because ionizing radiation produces reactive oxygen species that induce lesions, and not only is tumor tissue damaged, but overwhelming inflammatory lung damage can occur in the alveolar epithelium and capillary endothelium. This damage may result in radiation-induced pneumonitis and/or fibrosis. While describing the lung response to irradiation generally, the main focus of this review is on cytokines and their roles and functions within the individual stages. We discuss the relationship between radiation and cytokines and their direct and indirect effects on the formation and development of radiation injuries. Although this topic has been intensively studied and discussed for years, we still do not completely understand the roles of cytokines. Experimental data on cytokine involvement are fragmented across a large number of experimental studies; hence, the need for this review of the current knowledge. Cytokines are considered not only as molecular factors involved in the signaling network in pathological processes, but also for their diagnostic potential. A concentrated effort has been made to identify the significant immune system proteins showing positive correlation between serum levels and tissue damages. Elucidating the correlations between the extent and nature of radiation-induced pulmonary injuries and the levels of one or more key cytokines that initiate and control those damages may improve the efficacy of radiotherapy in cancer treatment and ultimately the well-being of patients.
- MeSH
- chemokiny škodlivé účinky MeSH
- cytokiny škodlivé účinky MeSH
- lidé MeSH
- plíce patologie účinky záření MeSH
- poškození plic chemicky indukované patologie MeSH
- radiační poranění chemicky indukované MeSH
- receptory chemokinů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chemokiny MeSH
- cytokiny MeSH
- receptory chemokinů MeSH