Nejvíce citovaný článek - PubMed ID 24571790
The influence of culture conditions on the identification of Mycobacterium species by MALDI-TOF MS profiling
The nontuberculous mycobacteria are typically environmental organisms residing in soil and water. These microorganisms can cause a wide range of clinical diseases; pulmonary disease is most frequent, followed by lymphadenitis in children, skin and soft tissue disease, and rare extra pulmonary or disseminated infections. Mycobacterium avium complex is the second most common cause of pulmonary mycobacterioses after M. tuberculosis. This review covers the clinical and laboratory diagnosis of infection caused by the members of this complex and particularities for the treatment of different disease types and patient populations.
- MeSH
- intracelulární infekce bakterií Mycobacterium avium diagnóza etiologie terapie MeSH
- lidé MeSH
- mikrobiologie životního prostředí MeSH
- Mycobacterium avium komplex klasifikace účinky léků genetika MeSH
- rizikové faktory MeSH
- zdroje nemoci mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Infections, mostly those associated with colonization of wound by different pathogenic microorganisms, are one of the most serious health complications during a medical treatment. Therefore, this study is focused on the isolation, characterization, and identification of microorganisms prevalent in superficial wounds of patients (n=50) presenting with bacterial infection. METHODS: After successful cultivation, bacteria were processed and analyzed. Initially the identification of the strains was performed through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry based on comparison of protein profiles (2-30kDa) with database. Subsequently, bacterial strains from infected wounds were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and sequencing of 16S rRNA gene 108. RESULTS: The most prevalent species was Staphylococcus aureus (70%), and out of those 11% turned out to be methicillin-resistant (mecA positive). Identified strains were compared with patients' diagnoses using the method of artificial neuronal network to assess the association between severity of infection and wound microbiome species composition. Artificial neuronal network was subsequently used to predict patients' prognosis (n=9) with 85% success. CONCLUSIONS: In all of 50 patients tested bacterial infections were identified. Based on the proposed artificial neuronal network we were able to predict the severity of the infection and length of the treatment.
- Klíčová slova
- Bacterial strains, MALDI-TOF, Sequencing, Superficial wounds,
- MeSH
- časové faktory MeSH
- dospělí MeSH
- fylogeneze MeSH
- infekce v ráně mikrobiologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikrobiota * MeSH
- mladý dospělý MeSH
- neuronové sítě MeSH
- RNA ribozomální 16S genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stupeň závažnosti nemoci MeSH
- techniky typizace bakterií metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The environment is a reservoir of nontuberculous mycobacteria and is considered a source of infection for animals and humans. Mycobacteria can persist in different types of environments for a relatively long time. We have studied their possible internalization into plant tissue through intact, as well as damaged, root systems of different types of plants grown in vitro and under field conditions. The substrate into which plants were seeded was previously contaminated with different strains of Mycobacterium avium (10(8) to 10(10) cells/g of soil) and feces from animals with paratuberculosis. We detected M. avium subsp. avium, hominissuis, and paratuberculosis in the stems and leaves of the plants by both culture and real-time quantitative PCR. The presence of mycobacteria in the plant tissues was confirmed by microscopy. The concentration of mycobacteria found inside plant tissue was several orders of magnitude lower (up to 10(4) cells/g of tissue) than the initial concentration of mycobacteria present in the culture medium or substrate. These findings led us to the hypothesis that plants may play a role in the spread and transmission of mycobacteria to other organisms in the environment.
- MeSH
- bakteriologické techniky MeSH
- endocytóza * MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- listy rostlin mikrobiologie MeSH
- mikroskopie MeSH
- Mycobacterium genetika růst a vývoj fyziologie MeSH
- rostliny mikrobiologie MeSH
- stonky rostlin mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH