Nejvíce citovaný článek - PubMed ID 24625778
Germline transgenesis in rodents by pronuclear microinjection of Sleeping Beauty transposons
Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.
- Klíčová slova
- ATP synthase deficiency, TMEM70 factor, gene therapy, mitochondria disease, transgenic rescue,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Vertebrate meiotic recombination events are concentrated in regions (hotspots) that display open chromatin marks, such as trimethylation of lysines 4 and 36 of histone 3 (H3K4me3 and H3K36me3). Mouse and human PRDM9 proteins catalyze H3K4me3 and H3K36me3 and determine hotspot positions, whereas other vertebrates lacking PRDM9 recombine in regions with chromatin already opened for another function, such as gene promoters. While these other vertebrate species lacking PRDM9 remain fertile, inactivation of the mouse Prdm9 gene, which shifts the hotspots to the functional regions (including promoters), typically causes gross fertility reduction; and the reasons for these species differences are not clear. RESULTS: We introduced Prdm9 deletions into the Rattus norvegicus genome and generated the first rat genome-wide maps of recombination-initiating double-strand break hotspots. Rat strains carrying the same wild-type Prdm9 allele shared 88% hotspots but strains with different Prdm9 alleles only 3%. After Prdm9 deletion, rat hotspots relocated to functional regions, about 40% to positions corresponding to Prdm9-independent mouse hotspots, including promoters. Despite the hotspot relocation and decreased fertility, Prdm9-deficient rats of the SHR/OlaIpcv strain produced healthy offspring. The percentage of normal pachytene spermatocytes in SHR-Prdm9 mutants was almost double than in the PWD male mouse oligospermic sterile mutants. We previously found a correlation between the crossover rate and sperm presence in mouse Prdm9 mutants. The crossover rate of SHR is more similar to sperm-carrying mutant mice, but it did not fully explain the fertility of the SHR mutants. Besides mild meiotic arrests at rat tubular stages IV (mid-pachytene) and XIV (metaphase), we also detected postmeiotic apoptosis of round spermatids. We found delayed meiosis and age-dependent fertility in both sexes of the SHR mutants. CONCLUSIONS: We hypothesize that the relative increased fertility of rat versus mouse Prdm9 mutants could be ascribed to extended duration of meiotic prophase I. While rat PRDM9 shapes meiotic recombination landscapes, it is unnecessary for recombination. We suggest that PRDM9 has additional roles in spermatogenesis and speciation-spermatid development and reproductive age-that may help to explain male-specific hybrid sterility.
- Klíčová slova
- Fertility, Meiotic recombination, PRDM9, Rattus norvegicus,
- MeSH
- chromatin MeSH
- dvouřetězcové zlomy DNA MeSH
- fertilita genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- krysa rodu Rattus MeSH
- meióza * genetika MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- spermatogeneze genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- chromatin MeSH
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
Fatty acid esters of hydroxy fatty acids (FAHFAs) are lipid mediators with promising antidiabetic and anti-inflammatory properties that are formed in white adipose tissue (WAT) via de novo lipogenesis, but their biosynthetic enzymes are unknown. Using a combination of lipidomics in WAT, quantitative trait locus mapping, and correlation analyses in rat BXH/HXB recombinant inbred strains, as well as response to oxidative stress in murine models, we elucidated the potential pathway of biosynthesis of several FAHFAs. Comprehensive analysis of WAT samples identified ∼160 regioisomers, documenting the complexity of this lipid class. The linkage analysis highlighted several members of the nuclear factor, erythroid 2 like 2 (Nrf2)-mediated antioxidant defense system (Prdx6, Mgst1, Mgst3), lipid-handling proteins (Cd36, Scd6, Acnat1, Acnat2, Baat), and the family of flavin containing monooxygenases (Fmo) as the positional candidate genes. Transgenic expression of Nrf2 and deletion of Prdx6 genes resulted in reduction of palmitic acid ester of 9-hydroxystearic acid (9-PAHSA) and 11-PAHSA levels, while oxidative stress induced by an inhibitor of glutathione synthesis increased PAHSA levels nonspecifically. Our results indicate that the synthesis of FAHFAs via carbohydrate-responsive element-binding protein-driven de novo lipogenesis depends on the adaptive antioxidant system and suggest that FAHFAs may link activity of this system with insulin sensitivity in peripheral tissues.
- MeSH
- bílá tuková tkáň enzymologie metabolismus MeSH
- biologické markery metabolismus MeSH
- estery chemie metabolismus MeSH
- faktor 2 související s NF-E2 genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- kyselina palmitová chemie metabolismus MeSH
- kyseliny stearové chemie metabolismus MeSH
- metabolomika metody MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- náhodné rozdělení MeSH
- oxidační stres * MeSH
- peroxiredoxin VI genetika metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- regulace genové exprese enzymů * MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-hydroxystearic acid MeSH Prohlížeč
- biologické markery MeSH
- estery MeSH
- faktor 2 související s NF-E2 MeSH
- kyselina palmitová MeSH
- kyseliny stearové MeSH
- Nfe2l2 protein, mouse MeSH Prohlížeč
- Nfe2l2 protein, rat MeSH Prohlížeč
- peroxiredoxin VI MeSH
- Prdx6 protein, mouse MeSH Prohlížeč
The spontaneously hypertensive rat (SHR) is the most widely used animal model of essential hypertension and left ventricular hypertrophy. Catecholamines play an important role in the pathogenesis of both essential hypertension in humans and in the SHR. Recently, we obtained evidence that the SHR harbors a variant in the gene for dopamine beta hydroxylase (Dbh) that is associated with reduced adrenal expression of Dbh mRNA and reduced DBH enzymatic activity which correlated negatively with blood pressure. In the current study, we used a transgenic experiment to test the hypothesis that reduced Dbh expression predisposes the SHR to hypertension and that augmentation of Dbh expression would reduce blood pressure. We derived 2 new transgenic SHR-Dbh lines expressing Dbh cDNA under control of the Brown Norway (BN) wild type promoter. We found modestly increased adrenal expression of Dbh in transgenic rats versus SHR non-transgenic controls that was associated with reduced adrenal levels of dopamine and increased plasma levels of norepinephrine and epinephrine. The observed changes in catecholamine metabolism were associated with increased blood pressure and left ventricular mass in both transgenic lines. We did not observe any consistent changes in brainstem levels of catecholamines or of mRNA levels of Dbh in the transgenic strains. Contrary to our initial expections, these findings are consistent with the possibility that genetically determined decreases in adrenal expression and activity of DBH do not represent primary determinants of increased blood pressure in the SHR model.
- MeSH
- adrenalin metabolismus MeSH
- dopamin-beta-hydroxylasa biosyntéza genetika MeSH
- dopamin metabolismus MeSH
- geneticky modifikovaná zvířata MeSH
- hypertenze genetika patofyziologie MeSH
- komplementární DNA biosyntéza genetika MeSH
- krevní tlak genetika MeSH
- krysa rodu Rattus MeSH
- mozkový kmen metabolismus MeSH
- nadledviny enzymologie MeSH
- noradrenalin metabolismus MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- regulace genové exprese enzymů genetika MeSH
- transgeny MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenalin MeSH
- dopamin-beta-hydroxylasa MeSH
- dopamin MeSH
- komplementární DNA MeSH
- noradrenalin MeSH
The pig has emerged as an important large animal model in biomedical and pharmaceutical research. We describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in pigs by using the Sleeping Beauty (SB) transposon system. The protocol is based on co-injection of a plasmid encoding the SB100X hyperactive transposase, together with a second plasmid carrying a transgene flanked by binding sites for the transposase, into the cytoplasm of porcine zygotes. The transposase mediates excision of the transgene cassette from the plasmid vector and its permanent insertion into the genome to produce stable transgenic animals. This method compares favorably in terms of both efficiency and reliable transgene expression to classic pronuclear microinjection or somatic cell nuclear transfer (SCNT), and it offers comparable efficacies to lentiviral approaches, without limitations on vector design, issues of transgene silencing and the toxicity and biosafety concerns of working with viral vectors. Microinjection of the vectors into zygotes and transfer of the embryos to recipient animals can be performed in 1 d; generation of germline-transgenic lines by using this protocol takes ∼1 year.
- MeSH
- genetické vektory MeSH
- geneticky modifikovaná zvířata * MeSH
- genom MeSH
- mikroinjekce MeSH
- prasata genetika MeSH
- technika přenosu genů * MeSH
- transposasy MeSH
- transpozibilní elementy DNA * MeSH
- zárodečné buňky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transposasy MeSH
- transpozibilní elementy DNA * MeSH
The laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for a variety of inherited and acquired human diseases. In addition, the rabbit is the smallest livestock animal that is used to transgenically produce pharmaceutical proteins in its milk. Here we describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in rabbits by using the Sleeping Beauty (SB) transposon system. The protocol is based on co-injection into the pronuclei of fertilized oocytes of synthetic mRNA encoding the SB100X hyperactive transposase together with plasmid DNA carrying a transgene construct flanked by binding sites for the transposase. The translation of the transposase mRNA is followed by enzyme-mediated excision of the transgene cassette from the plasmids and its permanent genomic insertion to produce stable transgenic animals. Generation of a germline-transgenic founder animal by using this protocol takes ∼2 months. Transposon-mediated transgenesis compares favorably in terms of both efficiency and reliable transgene expression with classic pronuclear microinjection, and it offers comparable efficacies (numbers of transgenic founders obtained per injected embryo) to lentiviral approaches, without limitations on vector design, issues of transgene silencing, and the toxicity and biosafety concerns of working with viral vectors.
- MeSH
- časové faktory MeSH
- geneticky modifikovaná zvířata * MeSH
- králíci MeSH
- mikroinjekce MeSH
- technika přenosu genů * MeSH
- transposasy genetika MeSH
- transpozibilní elementy DNA * MeSH
- zárodečné buňky MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- transposasy MeSH
- transpozibilní elementy DNA * MeSH