Nejvíce citovaný článek - PubMed ID 24688385
Effect of selenate on viability and selenomethionine accumulation of Chlorella sorokiniana grown in batch culture
The main entrance point of highly toxic organic Hg forms, including methylmercury (MeHg), into the aquatic food web is phytoplankton, which is greatly represented by various natural microalgal species. Processes associated with MeHg fate in microalgae cells such as uptake, effects on cells and toxicity, Hg biotransformation, and intracellular stability are detrimental to the process of further biomagnification and, as a consequence, have great importance for human health. The study of MeHg uptake and distribution in cultures of marine halophile Dunaliella salina and freshwater acidophilic alga Coccomyxa onubensis demonstrated that most of the MeHg is imported inside the cell, while cell surface adhesion is insignificant. Almost all MeHg is removed from the culture medium after 72 h. Significant processes in rapid MeHg removal from liquid medium are its abiotic photodegradation and volatilization associated with algal enzymatic activity. The maximum intracellular accumulation for both species was in 80 nM MeHg-exposed cultures after 24 h of exposure for D. salina (from 27 to 34 µg/gDW) and at 48 h for C. onubensis (up to 138 µg/gDW). The different Hg intakes in these two strains could be explained by the lack of a rigid cell wall in D. salina and the higher chemical ability of MeHg to pass through complex cell wall structures in C. onubensis. Electron microscopy studies on the ultrastructure of both strains demonstrated obvious microvacuolization in the form of many very small vacuoles and partial cell membrane disruption in 80 nM MeHg-exposed cultures. Results further showed that Coccomyxa onubensis is a good candidate for MeHg-contaminated water reclamation due to its great robustness at nanomolar concentrations of MeHg coupled with its very high intake and almost complete Hg removal from liquid medium at the MeHg levels tested.
- Klíčová slova
- mercury contamination, mercury toxicity, methylmercury, microalgae,
- Publikační typ
- časopisecké články MeSH
Selenium (Se) is a natural trace element, which shifts its action in a relatively narrow concentration range from nutritional role to toxicity. Although it has been well established that in plants chloroplasts are among the primary targets, the mechanism of toxicity on photosynthesis is not well understood. Here, we compared selenate and red-allotrope elemental selenium nanoparticles (red nanoSe) in in vitro tobacco cultures to investigate their effects on the structure and functions of the photosynthetic machinery. Selenate at 10 mg/L concentration retarded plant growth; it also led to a decreased chlorophyll content, accompanied with an increase in the carotenoid-to-chlorophyll ratio. Structural examinations of the photosynthetic machinery, using electron microscopy, small-angle neutron scattering and circular dichroism spectroscopy, revealed significant perturbation in the macro-organization of the pigment-protein complexes and sizeable shrinkage in the repeat distance of granum thylakoid membranes. As shown by chlorophyll a fluorescence transient measurements, these changes in the ultrastructure were associated with a significantly diminished photosystem II activity and a reduced performance of the photosynthetic electron transport, and an enhanced capability of non-photochemical quenching. These changes in the structure and function of the photosynthetic apparatus explain, at least in part, the retarded growth of plantlets in the presence of 10 mg/L selenate. In contrast, red nanoSe, even at 100 mg/L and selenate at 1 mg/L, exerted no negative effect on the growth of plantlets and affected only marginally the thylakoid membrane ultrastructure and the photosynthetic functions.
- Klíčová slova
- Chlorophyll fluorescence transients, Chloroplast thylakoid membranes, Circular dichroism, Electron microscopy, Nicotiana tabacum, Selenate and Se-nanoparticles, Small-angle neutron scattering,
- MeSH
- chlorofyl metabolismus MeSH
- chloroplasty metabolismus MeSH
- cirkulární dichroismus MeSH
- fotosyntéza fyziologie MeSH
- kyselina selenová metabolismus MeSH
- nanočástice chemie MeSH
- tabák metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl MeSH
- kyselina selenová MeSH
Microalgae are able to metabolize inorganic selenium (Se) to organic forms (e.g. Se-proteins); nevertheless at certain Se concentration culture growth is inhibited. The aim of this work was to confirm the hypothesis that the limit of Se tolerance in Chlorella cultures is related to photosynthetic performance, i.e. depends on light intensity. We studied the relation between the dose and irradiance to find the range of Se tolerance in laboratory and outdoor cultures. At low irradiance (250 µmol photons m-2 s-1), the daily dose of Se below 8.5 mg per g of biomass (<20 µM) partially stimulated the photosynthetic activity (relative electron transport rate) and growth of Chlorella cultures (biomass density of ~1.5 g DW L-1) compared to the control (no Se added). It was accompanied by substantial Se incorporation to microalgae biomass (~0.5 mg Se g-1 DW). When the Se daily dose and level of irradiance were doubled (16 mg Se g-1 DW; 500 µmol photons m-2 s-1), the photosynthetic activity and growth were stimulated for several days and ample incorporation of Se to biomass (7.1 mg g-1 DW) was observed. Yet, the same Se daily dose under increased irradiance (750 µmol photons m-2 s-1) caused the synergistic effect manifested by significant inhibition of photosynthesis, growth and lowered Se incorporation to biomass. In the present experiments Chl fluorescence techniques were used to monitor photosynthetic activity for determination of optimal Se doses in order to achieve efficient incorporation without substantial inhibition of microalgae growth when producing Se-enriched biomass.
- Klíčová slova
- Chlorella, Chlorophyll fluorescence, Growth, Irradiance intensity, Photosynthesis, Selenium incorporation,
- Publikační typ
- časopisecké články MeSH