Nejvíce citovaný článek - PubMed ID 24861948
BACKGROUND: Only a few studies dealt with the occurrence of endospore-forming clostridia in the microbiota of infants without obvious health complications. METHODS: A methodology pipeline was developed to determine the occurrence of endospore formers in infant feces. Twenty-four fecal samples (FS) were collected from one infant in monthly intervals and were subjected to variable chemical and heat treatment in combination with culture-dependent analysis. Isolates were identified by MALDI-TOF mass spectrometry, 16S rRNA gene sequencing, and characterized with biochemical assays. RESULTS: More than 800 isolates were obtained, and a total of 21 Eubacteriales taxa belonging to the Clostridiaceae, Lachnospiraceae, Oscillospiraceae, and Peptostreptococcaceae families were detected. Clostridium perfringens, C. paraputrificum, C. tertium, C. symbiosum, C. butyricum, and C. ramosum were the most frequently identified species compared to the rarely detected Enterocloster bolteae, C. baratii, and C. jeddahense. Furthermore, the methodology enabled the subsequent cultivation of less frequently detectable gut taxa such as Flavonifractor plautii, Intestinibacter bartlettii, Eisenbergiella tayi, and Eubacterium tenue. The isolates showed phenotypic variability regarding enzymatic activity, fermentation profiles, and butyrate production. CONCLUSIONS: Taken together, this approach suggests and challenges a cultivation-based pipeline that allows the investigation of the population of endospore formers in complex ecosystems such as the human gastrointestinal tract.
- Klíčová slova
- Butyrate, Clostridium, Cultivation, Endospore formers, Fermentation profiles, Infant gut microbiota,
- MeSH
- Clostridium * genetika MeSH
- feces mikrobiologie MeSH
- Firmicutes genetika MeSH
- kojenec MeSH
- lidé MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S genetika MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
16S rRNA amplicon sequencing or, more recently, metatranscriptomic analysis are currently the only preferred methods for microbial profiling of samples containing a predominant ratio of human to bacterial DNA. However, due to the off-target amplification of human DNA, current protocols are inadequate for bioptic samples. Here we present an efficient, reliable, and affordable method for the bacteriome analysis of clinical samples human DNA content predominates. We determined the microbiota profile in a total of 40 human biopsies of the esophagus, stomach, and duodenum using 16S rRNA amplicon sequencing with the widely used 515F-806R (V4) primers targeting the V4 region, 68F-338R primers and a modified set of 68F-338R (V1-V2M) primers targeting the V1-V2 region. With the V4 primers, on average 70% of amplicon sequence variants (ASV) mapped to the human genome. On the other hand, this off-target amplification was absent when using the V1-V2M primers. Moreover, the V1-V2M primers provided significantly higher taxonomic richness and reproducibility of analysis compared to the V4 primers. We conclude that the V1-V2M 16S rRNA sequencing method is reliable, cost-effective, and applicable for low-bacterial abundant human samples in medical research.
- MeSH
- biopsie MeSH
- gastrointestinální trakt MeSH
- geny rRNA MeSH
- lidé MeSH
- mikrobiota * genetika MeSH
- reprodukovatelnost výsledků MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA metody MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Metabolic syndrome is a cluster of three or more metabolic disorders including insulin resistance, obesity, and hyperlipidemia. Obesity has become the epidemic of the twenty-first century with more than 1.6 billion overweight adults. Due to the strong connection between obesity and type 2 diabetes, obesity has received wide attention with subsequent coining of the term "diabesity." Recent studies have identified unique contributions of the immensely diverse gut microbiota in the pathogenesis of obesity and diabetes. Several mechanisms have been proposed including altered glucose and fatty acid metabolism, hepatic fatty acid storage, and modulation of glucagon-like peptide (GLP)-1. Importantly, the relationship between unhealthy diet and a modified gut microbiota composition observed in diabetic or obese subjects has been recognized. Similarly, the role of diet rich in polyphenols and plant polysaccharides in modulating gut bacteria and its impact on diabetes and obesity have been the subject of investigation by several research groups. Gut microbiota are also responsible for the extensive metabolism of polyphenols thus modulating their biological activities. The aim of this review is to shed light on the composition of gut microbes, their health importance and how they can contribute to diseases as well as their modulation by polyphenols and polysaccharides to control obesity and diabetes. In addition, the role of microbiota in improving the oral bioavailability of polyphenols and hence in shaping their antidiabetic and antiobesity activities will be discussed.
- Klíčová slova
- food ingredients, metabolic diseases, microbiota, natural products, obesity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH