Nejvíce citovaný článek - PubMed ID 24879352
David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
- Klíčová slova
- NGS spider venom transcriptome analysis, complex precursors, cytolytical peptides, linear peptides, lycosins, oxyopinins, tachykinin-like peptides, venom protease,
- Publikační typ
- časopisecké články MeSH
In predators an ontogenetic trophic shift includes change from small to large prey of several different taxa. In myrmecophagous predators that are also mimics of ants, the ontogenetic trophic shift should be accompanied by a parallel mimetic change. Our aim was to test whether ant-eating jumping spider, Mexcala elegans, is myrmecomorphic throughout their ontogenetic development, and whether there is an ontogenetic shift in realised trophic niche and their mimetic models. We performed field observations on the association of Mexcala with ant species and investigated the natural prey of the ontogenetic classes by means of molecular methods. Then we measured the mimetic similarity of ontogenetic morphs to putative mimetic models. We found Mexcala is an inaccurate mimic of ants both in the juvenile and adult stages. During ontogenesis it shifts mimetic models. The mimetic similarity was rather superficial, so an average bird predator should distinguish spiders from ants based on colouration. The realised trophic niche was narrow, composed mainly of ants of different species. There was no significant difference in the prey composition between ontogenetic stages. Females were more stenophagous than juveniles. We conclude that Mexcala is an ant-eating specialist that reduces its prey spectrum and shifts ant models during ontogenesis.
- MeSH
- bio-ontologie MeSH
- biologická adaptace fyziologie MeSH
- biologická evoluce MeSH
- ekosystém MeSH
- Formicidae MeSH
- mimikry fyziologie MeSH
- pavouci metabolismus fyziologie MeSH
- predátorské chování fyziologie MeSH
- selekce (genetika) genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The venom of predators should be under strong selection pressure because it is a costly substance and prey may potentially become resistant. Particularly in prey-specialized predators, venom should be selected for its high efficiency against the focal prey. Very effective venom paralysis has been observed in specialized predators, such as spiders preying on dangerous prey. Here, we compared the toxicity of the venoms of two prey-specialized species, araneophagous Palpimanus sp. and myrmecophagous Zodarion nitidum, and their related generalist species. We injected different venom concentrations into two prey types-the prey preferred by a specialist and an alternative prey-and observed the mortality and the paralysis of the prey within 24 h. We found that the venoms of specialists were far more potent towards the preferred prey than alternative prey. The venoms of generalists were similarly potent towards both prey types. In addition, we tested the efficacy of two venom fractions (smaller and larger than 10 kDa) in araneophagous Palpimanus sp. Compounds larger than 10 kDa paralyzed both prey types, but smaller compounds (<10 kDa) were effective only on preferred prey, suggesting the presence of prey-specific compounds in the latter fraction. Our results confirm that prey-specialized spiders possess highly specific venom that allows them to subdue dangerous prey.
- Klíčová slova
- Araneae, LD50, ecological niche, predator-prey interactions, specialization, toxicity, venom ecological function,
- MeSH
- druhová specificita MeSH
- ekosystém MeSH
- Formicidae MeSH
- Gryllidae MeSH
- LD50 MeSH
- molekulová hmotnost MeSH
- paralýza chemicky indukované MeSH
- pavoučí jedy chemie toxicita MeSH
- pavouci chemie MeSH
- predátorské chování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- pavoučí jedy MeSH
Hunting other predators is dangerous, as the tables can turn and the hunter may become the hunted. Specialized araneophagic (spider eating) predators have evolved intriguing hunting strategies that allow them to invade spiders' webs by adopting a stealthy approach or using aggressive mimicry. Here, we present a newly discovered, specialized hunting strategy of the araneophagic spider Poecilochroa senilis (Araneae: Gnaphosidae), which forces its way into the silk retreat of the potential spider prey and immobilizes it by swathing gluey silk onto its forelegs and mouthparts. Poecilochroa senilis has been reported from the nests of a several, often large, spider species in the Negev desert (Israel), suggesting specialization on spiders as prey. Nevertheless, in laboratory experiments, we found that P. senilis has a wider trophic niche, and fed readily on several small insect species. The specialized nest-invading attack was used more frequently with large spiders, and even small juvenile P. senilis were able to attack and subdue larger spiders. Our observations show that specific hunting tactics, like nest usurpation, allow specialized predators to overcome defences of dangerous prey.
- MeSH
- pavouci fyziologie MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.
- Klíčová slova
- Dangerous prey, Macronutrients, Predatory behavior, Prey size, Trophic niche,
- MeSH
- druhová specificita MeSH
- fyziologická adaptace MeSH
- fyziologie výživy zvířat * MeSH
- pavouci fyziologie MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Specialist true predators are expected to exhibit higher capture efficiencies for the capture of larger and dangerous prey than generalist predators due to their possession of specialized morphological and behavioral adaptations. We used an araneophagous spider (Lampona murina) and a generalist spider (Drassodes lapidosus) as phylogenetically related model species and investigated their realized and fundamental trophic niches and their efficacy with respect to prey capture and prey handling. The trophic niche of both species confirmed that Lampona had a narrow trophic niche with a predominance of spider prey (including conspecifics), while the niche of Drassodes was wide, without any preference. DNA analysis of the gut contents of Lampona spiders collected in the field revealed that spiders form a significant part of its natural diet. Lampona captured significantly larger prey than itself and the prey captured by Drassodes. As concerns hunting strategy, Lampona grasped the prey with two pairs of legs possessing scopulae, whereas Drassodes immobilized prey with silk. Lampona possess forelegs equipped with scopulae and a thicker cuticle similar to other nonrelated araneophagous spiders. Lampona fed for a longer time and extracted more nutrients than Drassodes. We show that specialized behavioral and morphological adaptations altogether increase the hunting efficiency of specialists when compared to generalists.
- Klíčová slova
- Araneae, Araneophagy, Drassodes, Lampona, NGS, cannibalism, morphology, trophic niche,
- Publikační typ
- časopisecké články MeSH
The morphological, physiological, and behavioural traits of organisms are often used as surrogates for actual ecological functions. However, differences in these traits do not necessarily lead to functional differences and/or can be context-dependent. Therefore, it is necessary to explicitly test whether the surrogates have general ecological relevance. To investigate the relationship between the hunting strategies of predators (i.e., how, where, and when they hunt) and their function, we used euryphagous spiders as a model group. We used published data on the diet composition of 76 spider species based on natural prey and laboratory prey acceptance experiments. We computed differences in the position and width of trophic niches among pairs of sympatrically occurring species. Pairs were made at different classification levels, ranked according to the dissimilarity in their hunting strategies: congeners, confamiliars (as phylogenetic proxies for similarity in hunting strategy), species from the same main class of hunting strategy, from the same supra-class, and from different supra-classes. As for niche position computed from the natural prey analyses, species from the same class differed less than species from different classes. A similar pattern was obtained from the laboratory studies, but the congeners differed less than the species from the same classes. Niche widths were most similar among congeners and dissimilar among species from different supra-classes. Functional differences among euryphagous spiders increased continuously with increasing difference in their hunting strategy. The relative frequency of hunting strategies within spider assemblages can, therefore, influence the food webs through hunting strategy-specific predator-prey interactions.
- Klíčová slova
- Araneae, Euryphagy, Functional diversity, Guilds, Niche, Spiders,
- MeSH
- fylogeneze * MeSH
- pavouci MeSH
- potravní řetězec MeSH
- predátorské chování * MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
True predators are characterised by capturing a number of prey items during their lifetime and by being generalists. Some true predators are facultative specialists, but very few species are stenophagous specialists that catch only a few closely related prey types. A monophagous true predator that would exploit a single prey species has not been discovered yet. Representatives of the spider family Ammoxenidae have been reported to have evolved to only catch termites. Here we tested the hypothesis that Ammoxenus amphalodes is a monophagous termite-eater capturing only Hodotermes mossambicus. We studied the trophic niche of A. amphalodes by means of molecular analysis of the gut contents using Next Generation Sequencing. We investigated their willingness to accept alternative prey and observed their specific predatory behaviour and prey capture efficiency. We found all of the 1.4 million sequences were H. mossambicus. In the laboratory A. amphalodes did not accept any other prey, including other termite species. The spiders attacked the lateral side of the thorax of termites and immobilised them within 1 min. The paralysis efficiency was independent of predator:prey size ratio. The results strongly indicate that A. amphalodes is a monophagous prey specialist, specifically adapted to feed on H. mossambicus.
- MeSH
- Isoptera genetika MeSH
- pavouci * genetika MeSH
- predátorské chování * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH