Nejvíce citovaný článek - PubMed ID 24935618
The frequency of precocious segregation of sister chromatids in mouse female meiosis I is affected by genetic background
Chromosome segregation in female germ cells and early embryonic blastomeres is known to be highly prone to errors. The resulting aneuploidy is therefore the most frequent cause of termination of early development and embryo loss in mammals. And in specific cases, when the aneuploidy is actually compatible with embryonic and fetal development, it leads to severe developmental disorders. The main surveillance mechanism, which is essential for the fidelity of chromosome segregation, is the Spindle Assembly Checkpoint (SAC). And although all eukaryotic cells carry genes required for SAC, it is not clear whether this pathway is active in all cell types, including blastomeres of early embryos. In this review, we will summarize and discuss the recent progress in our understanding of the mechanisms controlling chromosome segregation and how they might work in embryos and mammalian embryos in particular. Our conclusion from the current literature is that the early mammalian embryos show limited capabilities to react to chromosome segregation defects, which might, at least partially, explain the widespread problem of aneuploidy during the early development in mammals.
- Klíčová slova
- CDK1, aneuploidy, cell size, chromosome division, embryo, segregation errors, spindle, spindle assembly checkpoint,
- MeSH
- aneuploidie MeSH
- chromozomy MeSH
- embryonální vývoj * genetika MeSH
- lidé MeSH
- savci genetika MeSH
- segregace chromozomů * MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In both mitosis and meiosis, metaphase to anaphase transition requires the activity of a ubiquitin ligase known as anaphase promoting complex/cyclosome (APC/C). The activation of APC/C in metaphase is under the control of the checkpoint mechanism, called the spindle assembly checkpoint (SAC), which monitors the correct attachment of all kinetochores to the spindle. It has been shown previously in somatic cells that exposure to a small molecule inhibitor, prodrug tosyl-l-arginine methyl ester (proTAME), resulted in cell cycle arrest in metaphase, with low APC/C activity. Interestingly, some reports have also suggested that the activity of SAC is required for this arrest. We focused on the characterization of proTAME inhibition of cell cycle progression in mammalian oocytes and embryos. Our results show that mammalian oocytes and early cleavage embryos show dose-dependent metaphase arrest after exposure to proTAME. However, in comparison to the somatic cells, we show here that the proTAME-induced arrest in these cells does not require SAC activity. Our results revealed important differences between mammalian oocytes and early embryos and somatic cells in their requirements of SAC for APC/C inhibition. In comparison to the somatic cells, oocytes and embryos show much higher frequency of aneuploidy. Our results are therefore important for understanding chromosome segregation control mechanisms, which might contribute to the premature termination of development or severe developmental and mental disorders of newborns.
- Klíčová slova
- anaphase promoting complex, cell cycle, meiosis, oocytes, proTAME, spindle assembly checkpoint,
- MeSH
- anafázi podporující komplex metabolismus MeSH
- embryo savčí účinky léků metabolismus MeSH
- embryonální vývoj účinky léků MeSH
- kontrolní body M fáze buněčného cyklu * MeSH
- myši MeSH
- oocyty účinky léků růst a vývoj metabolismus MeSH
- prekurzory léčiv MeSH
- skot MeSH
- tosylargininmethylester aplikace a dávkování farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anafázi podporující komplex MeSH
- prekurzory léčiv MeSH
- tosylargininmethylester MeSH