Most cited article - PubMed ID 25055725
The antioxidant system of sterlet seminal fluid in testes and Wolffian ducts
Fish speciation was accompanied by changes in the urogenital system anatomy. In evolutionarily modern Teleostei, male reproductive tracts are fully separated from the excretory system, while in evolutionarily ancient Chondrostei and Holostei, the excretory and reproductive tracts are not separated. Sturgeon post-testicular sperm maturation (PTSM) occurring as a result of sperm/urine mixing is phenomenologically well described, while, in holosteans, functional intimacy of seminal ducts with kidney ducts and the existence of PTSM still need to be addressed. In Lepisosteus platostomus (Holostei), sperm samples were collected from testes (TS), efferent ducts (EDS), and Wolffian ducts (WDS). While WDS was motile, no motility was found in TS and EDS. The existence of PTSM was checked by in vitro PTSM procedure. After TS and EDS incubation in seminal fluid from WDS, no more than 5% motile spermatozoa were observed in TS, whereas in EDS the motility percentage was up to 75%. Experimental dyeing of urogenital ducts in gars and sturgeons revealed some differences in the interconnection between sperm ducts and kidneys. It is concluded that post-testicular sperm maturation occurs in gars and suggests that infraclass Holostei occupies an intermediate evolutionary position between Teleostei and Chondrostei in the anatomical arrangement of the urogenital system.
- MeSH
- Sperm Motility MeSH
- Genitalia, Male MeSH
- Fishes anatomy & histology MeSH
- Semen MeSH
- Spermatozoa MeSH
- Testis * MeSH
- Sperm Maturation * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sturgeon sperm maturation occurs outside the testes during the transit of testicular spermatozoa (TS) through the kidneys and the Wolffian ducts. A method of in vitro TS maturation in sterlet Acipenser ruthenus was used to investigate the effects of temperature and hormonal stimulation of spermiation on the ability of TS to complete this process. Spermatozoa motility parameters after in vitro maturation of testicular sperm, concentrations of sex steroid hormones and testis morphology were studied in three groups of sterlet: (1) after overwintering in ponds (OW), (2) adapted to spawning temperature (ST), and (3) adapted to spawning temperature with hormonal induction of spermiation (ST-HI). Blood plasma concentrations of testosterone, 11-ketotestosterone and 17,20β-dihydroxy-pregnenolone increased significantly after hormonal induction of spermiation (group ST-HI). In all groups, TS were not motile. After in vitro sperm maturation, motility was up to 60% only in group ST-HI. The data suggest that the ability of TS to be matured in vitro was not related to the environmental temperature, while hormonal stimulation of spermiation during the spawning season was an absolute requirement for optimal in vitro maturation.
- Keywords
- Wolffian duct, hormonal stimulation of spermiation, kidney, seminal fluid, sex steroid hormones, sperm maturation, spermatozoan motility, sturgeon,
- Publication type
- Journal Article MeSH
In sturgeon, the acquisition of the potential for motility activation called spermatozoon maturation takes place outside testes. This process can be accomplished in vitro by pre-incubation of immature testicular spermatozoa in seminal fluid collected from fully mature Wolffian duct sperm. Addition of trypsin inhibitor to the pre-incubation medium disrupts spermatozoon maturation. There are no available data for the role of proteolysis regulators in fish spermatozoon maturation, while their role is recognized in mammalian sperm maturation. The present study evaluated the involvement of seminal fluid proteases and anti-proteolytic activity in the sterlet spermatozoon maturation process. Casein and gelatin zymography and quantification of amidase and anti-proteolytic activity were conducted in sturgeon seminal fluid from Wolffian duct sperm and seminal fluid from testicular sperm, along with spermatozoon extracts from Wolffian duct spermatozoa, testicular spermatozoa, and testicular spermatozoa after in vitro maturation. We did not find significant differences in proteolytic profiles of seminal fluids from Wolffian duct sperm and ones from testicular sperm. Zymography revealed differences in spermatozoon extracts: Wolffian duct spermatozoon extracts were characterized by the presence of a broad proteolytic band ranging from 48 to 41 kDa, while testicular spermatozoon extracts did not show such activity until after in vitro maturation. The differences in amidase activity coincided with these results. It may not be the levels of proteolytic and anti-proteolytic activity per se, but the alterations in their interactions triggering a cascade of signaling events, that is crucial to the maturation process.
- Keywords
- Amidase activity, Anti-proteolytic activity, Casein and gelatin zymography, Siberian sturgeon sperm, Spermatozoon maturation, Sterlet sperm,
- MeSH
- Amidohydrolases metabolism MeSH
- Sperm Motility MeSH
- Proteolysis MeSH
- Fishes physiology MeSH
- Spermatozoa physiology MeSH
- Testis cytology MeSH
- Wolffian Ducts cytology MeSH
- Sperm Maturation * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- amidase MeSH Browser
- Amidohydrolases MeSH
The role of the seminal fluid antioxidant system in protection against damage to spermatozoa during in vitro sperm storage is unclear. This study investigated the effect of in vitro storage of sterlet Acipenser ruthenus spermatozoa together with seminal fluid for 36 h at 4 °C on spermatozoon motility rate and curvilinear velocity, thiobarbituric acid reactive substance level, and components of enzyme and non-enzyme antioxidant system (superoxide dismutase and catalase activity and uric acid concentration) in seminal fluid. Spermatozoon motility parameters after sperm storage were significantly decreased, while the level of thiobarbituric acid reactive substances, activity of superoxide dismutase and catalase, and uric acid concentration did not change. Our findings suggest that the antioxidant system of sterlet seminal fluid is effective in preventing oxidative stress during short-term sperm storage and prompt future investigations of changes in spermatozoon homeostasis and in spermatozoon plasma membrane structure which are other possible reasons of spermatozoon motility deterioration upon sperm storage.
- Keywords
- Antioxidant system, In vitro storage, Motility, Seminal fluid, Sterlet sperm,
- MeSH
- Catalase metabolism MeSH
- Uric Acid MeSH
- Thiobarbituric Acid Reactive Substances metabolism MeSH
- Sperm Motility MeSH
- Oxidative Stress MeSH
- Fishes physiology MeSH
- Semen metabolism MeSH
- Spermatozoa MeSH
- Superoxide Dismutase metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Catalase MeSH
- Uric Acid MeSH
- Thiobarbituric Acid Reactive Substances MeSH
- Superoxide Dismutase MeSH