Nejvíce citovaný článek - PubMed ID 11319037
In vertebrates, maternally supplied yolk is typically used in one of two ways: either intracellularly by endodermal cells or extracellularly via the yolk sac. This study delves into the distinctive gut development in sturgeons, which are among the most ancient extant fish groups, contrasting it with that of other vertebrates. Our observations indicate that while sturgeon endodermal cells form the archenteron (i.e., the primitive gut) dorsally, the floor of the archenteron is uniquely composed of extraembryonic yolk cells (YCs). As development progresses, during neurulation, the archenteric cavity inflates, expands laterally, and roofs a semicircle of YCs. By the pharyngula stage, the cavity fully encompasses the YC mass, which begins to be digested at the hatching stage. This suggests a notable deviation in sturgeon gut development from that in other vertebrates, as their digestive tract initiates its function by processing endogenous nutrition even before external feeding begins. Our findings highlight the evolutionary diversity of gut development strategies among vertebrates and provide new insights into the developmental biology of sturgeons.
- Klíčová slova
- gut–endoderm, holoblastic cleavage, meroblastic cleavage, sturgeon, vertebrate evolution,
- Publikační typ
- časopisecké články MeSH
Fish speciation was accompanied by changes in the urogenital system anatomy. In evolutionarily modern Teleostei, male reproductive tracts are fully separated from the excretory system, while in evolutionarily ancient Chondrostei and Holostei, the excretory and reproductive tracts are not separated. Sturgeon post-testicular sperm maturation (PTSM) occurring as a result of sperm/urine mixing is phenomenologically well described, while, in holosteans, functional intimacy of seminal ducts with kidney ducts and the existence of PTSM still need to be addressed. In Lepisosteus platostomus (Holostei), sperm samples were collected from testes (TS), efferent ducts (EDS), and Wolffian ducts (WDS). While WDS was motile, no motility was found in TS and EDS. The existence of PTSM was checked by in vitro PTSM procedure. After TS and EDS incubation in seminal fluid from WDS, no more than 5% motile spermatozoa were observed in TS, whereas in EDS the motility percentage was up to 75%. Experimental dyeing of urogenital ducts in gars and sturgeons revealed some differences in the interconnection between sperm ducts and kidneys. It is concluded that post-testicular sperm maturation occurs in gars and suggests that infraclass Holostei occupies an intermediate evolutionary position between Teleostei and Chondrostei in the anatomical arrangement of the urogenital system.
- MeSH
- motilita spermií MeSH
- mužské pohlavní orgány MeSH
- ryby anatomie a histologie MeSH
- sperma MeSH
- spermie MeSH
- testis * MeSH
- zrání spermie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
- Klíčová slova
- Craniofacial, Evolution, Neural crest, Neurulation, Vertebrates,
- MeSH
- biologická evoluce * MeSH
- crista neuralis cytologie embryologie MeSH
- embryo nesavčí cytologie embryologie MeSH
- pohyb buněk fyziologie MeSH
- ryby embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Despite the wide variety of adaptive modifications in the oral and facial regions of vertebrates, their early oropharyngeal development is considered strictly uniform. It involves sequential formation of the mouth and pharyngeal pouches, with ectoderm outlining the outer surface and endoderm the inner surface, as a rule. At the extreme anterior domain of vertebrate embryos, the ectoderm and endoderm directly juxtapose and initial development of this earliest ecto-endoderm interface, the primary mouth, typically involves ectodermal stomodeal invagination that limits the anterior expansion of the foregut endoderm. Here we present evidence that in embryos of extant non-teleost fishes, oral (stomodeal) formation is preceded by the development of prominent pre-oral gut diverticula (POGD) between the forebrain and roof of the forming mouth. Micro-computed tomography (micro-CT) imaging of bichir, sturgeon and gar embryos revealed that foregut outpocketing at the pre-oral domain begins even before the sequential formation of pharyngeal pouches. The presence of foregut-derived cells in the front of the mouth was further confirmed by in vivo experiments that allowed specific tracing of the early endodermal lining. We show that POGD in sturgeons contribute to the orofacial surface of their larvae, comprising oral teeth, lips, and sensory barbels. To our knowledge, this is the first thorough evidence for endodermal origin of external craniofacial structures in any vertebrate. In bichir and gar embryos, POGD form prominent cranial adhesive organs that are characteristic of the ancient bauplan of free-living chordate larvae. POGD hence seem arguably to be ancestral for all ray-finned fishes, and their topology, pharyngeal-like morphogenesis and gene expression suggest that they are evolutionarily related to the foregut-derived diverticula of early chordate and hemichordate embryos. The formation of POGD might thus represent an ancestral developmental module with deep deuterostome origins.
- MeSH
- endoderm embryologie MeSH
- fylogeneze MeSH
- larva genetika růst a vývoj MeSH
- lebka embryologie MeSH
- maxilofaciální vývoj * genetika MeSH
- rentgenová mikrotomografie MeSH
- ryby anatomie a histologie klasifikace embryologie genetika MeSH
- trávicí systém embryologie MeSH
- ústa embryologie MeSH
- vývojová regulace genové exprese MeSH
- zuby embryologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts.
- MeSH
- biologické modely * MeSH
- embryo nesavčí cytologie embryologie MeSH
- embryonální vývoj fyziologie MeSH
- pohyb buněk fyziologie MeSH
- ryby embryologie MeSH
- zárodečné buňky cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH