Most cited article - PubMed ID 25100296
Two-dimensional gel proteomic analysis of Dermatophagoides farinae feces
UNLABELLED: The intracellular parasite Cardinium influences the bacterial microbiome composition of arthropod hosts; however, the mechanisms involved remain poorly understood. We sought to evaluate the interactions between Cardinium (cTPut) and SOL in Tyrophagus putrescentiae cultures based on relative abundance and gene expression data. First, we assembled the genome of Candidatus Krakonobacterium acarorum (formerly the Soliltalea-like symbiont SOL), a novel lineage of the Bacteroidota symbiont of mites. The assemblage SOL genome (1.2 Mb) contained complete pathways for the biosynthesis of lipoic acids, pantothenate, and menaquinone from futalosine. SOL is considered a facultative inhabitant (with prevalences ranging from 36% to 80% among individuals) of the gut (from 102 to 104 copies/mite) that is not detected in eggs, suggesting an extracellular location in the gut of mites. Second, gene expression was analyzed in SOL-inhabited cultures, including two cultures with cTPut and two cultures without cTPut. Correlation-based evidence for competition between cTPut and SOL was found mainly in the expression of transporter proteins. The presence of cTPut decreased interactions between SOL and the mite host; however, SOL is under greater control by mites in the presence of cTPut than in the absence of cTPut. Mite KEGG gene expression levels in the peroxisome, autophagy, sphingolipid, apoptosis, PI3K-Akt, and lysozyme pathways were more strongly correlated with SOL gene expression in cultures without cTPut than in those with cTPut. In contrast, mite KEGG gene expression levels in the proteasome, NF-κB, TNF, calcium, and Rap1 signaling pathways were more strongly correlated with SOL in the presence of cTPut. The explanation for these results is that cTPut mostly interacts with the mite host, resulting in changes in the host's immunity-related/regulatory pathways, indirectly affecting the symbiont SOL. IMPORTANCE: Here, we describe the novel Bacteroidetes symbiont (SOL) of mites. The analysis of gene expression in meta-transcriptomic samples from cultures with and without the intracellular parasite Cardinium revealed the effect of Cardinium on SOL as a model facultative symbiont of mites. Our findings suggest that there is competition between these two symbionts for nutrients. In addition, Cardinium can influence other bacterial symbionts via mite host immunity-related and regulatory pathways. Tyrophagus putrescentiae is a cosmopolitan pest mite that contaminates the home environment, including stored food and feed, with allergens. The interactions between intracellular bacteria and other members of the microbiome influence host physiology and indirectly affect allergen production.
- Keywords
- Bacteroidetes, Bacteroidota, Cardinium, gene expression, interaction, mite, symbionts,
- MeSH
- Acaridae * microbiology MeSH
- Bacteroidetes * genetics physiology classification MeSH
- Phylogeny MeSH
- Genome, Bacterial MeSH
- Mites * microbiology MeSH
- Gene Expression Profiling MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
A novel Bartonella-like symbiont (BLS) of Tyrophagus putrescentiae was characterized. BLS formed a separate cluster from the Bartonella clade together with an ant symbiont. BLS was present in mite bodies (103 16S DNA copies/mite) and feces but was absent in eggs. This indicated the presence of the BLS in mite guts. The BLS showed a reduction in genome size (1.6 Mb) and indicates gene loss compared to Bartonella apis. The BLS can be interacted with its host by using host metabolic pathways (e.g., the histidine and arginine metabolic pathways) as well as by providing its own metabolic pathways (pantothenate and lipoic acid) to the host, suggesting the existence of a mutualistic association. Our experimental data further confirmed these potential mutualistic nutritional associations, as cultures of T. putrescentiae with low BLS abundance showed the strongest response after the addition of vitamins. Despite developing an arguably tight dependency on its host, the BLS has probably retained flagellar mobility, as evidenced by the 32 proteins enriched in KEGG pathways associated with flagellar assembly or chemotaxis (e.g., fliC, flgE, and flgK, as highly expressed genes). Some of these proteins probably also facilitate adhesion to host gut cells. The microcin C transporter was identified in the BLS, suggesting that microcin C may be used in competition with other gut bacteria. The 16S DNA sequence comparison indicated a mite clade of BLSs with a broad host range, including house dust and stored-product mites. Our phylogenomic analyses identified a unique lineage of arachnid specific BLSs in mites and scorpions.IMPORTANCEA Bartonella-like symbiont was found in an astigmatid mite of allergenic importance. We assembled the genome of the bacterium from metagenomes of different stored-product mite (T. putrescentiae) cultures. The bacterium provides pantothenate and lipoic acid to the mite host. The vitamin supply explains the changes in the relative abundance of BLSs in T. putrescentiae as the microbiome response to nutritional or pesticide stress, as observed previously. The phylogenomic analyses of available 16S DNA sequences originating from mite, scorpion, and insect samples identified a unique lineage of arachnid specific forming large Bartonella clade. BLSs associated with mites and a scorpion. The Bartonella clade included the previously described Ca. Tokpelaia symbionts of ants.
- Keywords
- Bartonella, ants, house dust, mite, nutrition, stored-product, symbionts, vitamin,
- MeSH
- Acaridae * microbiology MeSH
- Allergens MeSH
- Bacteria MeSH
- Bartonella * genetics MeSH
- Thioctic Acid * MeSH
- Mites * genetics MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Allergens MeSH
- Thioctic Acid * MeSH
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
BACKGROUND: The domestic mite Blomia tropicalis is a major source of allergens in tropical and subtropical regions. Despite its great medical importance, the allergome of this mite has not been sufficiently studied. Only 14 allergen groups have been identified in B. tropicalis thus far, even though early radioimmunoelectrophoresis techniques (27 uncharacterized allergen complexes) and comparative data based on 40 allergen groups officially recognized by the World Health Organization (WHO)/IUIS in domestic astigmatid mites suggest the presence of a large set of additional allergens. METHODS: Here, we employ a multiomics approach to assess the allergome of B. tropicalis using genomic and transcriptomic sequence data and perform highly sensitive protein abundance quantification. FINDINGS: Among the 14 known allergen groups, we confirmed 13 (one WHO/IUIS allergen, Blo t 19, was not found) and identified 16 potentially novel allergens based on sequence similarity. These data indicate that B. tropicalis shares 27 known/deduced allergen groups with pyroglyphid house dust mites (genus Dermatophagoides). Among these groups, five allergen-encoding genes are highly expressed at the transcript level: Blo t 1, Blo t 5, Blo t 21 (known), Blo t 15, and Blo t 18 (predicted). However, at the protein level, a different set of most abundant allergens was found: Blo t 2, 10, 11, 20 and 21 (mite bodies) or Blo t 3, 4, 6 and predicted Blo t 13, 14 and 36 (mite feces). INTERPRETATION: We report the use of an integrated omics method to identify and predict an array of mite allergens and advanced, label-free proteomics to determine allergen protein abundance. Our research identifies a large set of novel putative allergens and shows that the expression levels of allergen-encoding genes may not be strictly correlated with the actual allergenic protein abundance in mite bodies.
- Keywords
- IgE, enzyme, genome, label-free proteomics, mites, transcriptome,
- Publication type
- Journal Article MeSH
The two common species of house dust mites (HDMs), Dermatophagoides farinae and D. pteronyssinus, are major sources of allergens in human dwellings worldwide. Many allergens from HDMs have been described, but their extracts vary in immunogens. Mite strains may differ in their microbiomes, which affect mite allergen expression and contents of bacterial endotoxins. Some bacteria, such as the intracellular symbiont Cardinium, can affect both the sex ratio and biochemical pathways of mites, resulting in abundance variations of mite allergens/immunogens. Here, we investigated the bacterial microbiomes of D. farinae and D. pteronyssinus males and females using barcode 16S rDNA sequencing, qPCR, and genomic data analysis. We found a single species of Cardinium associated with D. farinae strains from the USA, China and Europe. Cardinium had high abundance relative to other bacterial taxa and represented 99% of all bacterial DNA reads from female mites from the USA. Cardinium was also abundant with respect to the number of host cells-we estimated 10.4-11.8 cells of Cardinium per single female mite cell. In a European D. farinae strain, Cardinium was more prevalent in females than in males (representing 92 and 67% of all bacterial taxa in females and males, respectively). In contrast, D. pteronyssinus lacked any Cardinium species, and the microbiomes of male and female mites were similar. We produced a Cardinium genome assembly (1.48 Mb; GenBank: PRJNA555788, GCA_007559345.1) associated with D. farinae. The ascertained ubiquity and abundance of Cardinium strongly suggest that this intracellular bacterium plays an important biological role in D. farinae.
- Keywords
- Acaridida, Allergen production, Astigmata, Cardinium, Dermatophagoides pteronyssinus, Microbiome,
- MeSH
- Bacteroidetes isolation & purification MeSH
- Dermatophagoides farinae microbiology MeSH
- Dermatophagoides pteronyssinus microbiology MeSH
- Genome, Bacterial * MeSH
- Microbiota MeSH
- Whole Genome Sequencing MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
- Europe MeSH
- United States MeSH
Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in balance to be beneficial for the mite. The mite-B. cereus symbiosis can be beneficial-suppressive at some level. The results increase the veterinary and medical importance of the allergens detected in feces. The B. cereus enzymes/toxins are important components of mite allergens. The strong symbiotic association of T. putrescentiae with B. cereus in DDF was indicated.
- Keywords
- Bacillus cereus, Tyrophagus putrescentiae, allergen, bacillolysin, exochitinase, nutrition, protease, symbiosis,
- Publication type
- Journal Article MeSH
Barley cultivar Amulet was used to study the quantitative proteome changes through different drought conditions utilizing two-dimensional difference gel electrophoresis (2D-DIGE). Plants were cultivated for 10 days under different drought conditions. To obtain control and differentially drought-treated plants, the soil water content was kept at 65, 35, and 30% of soil water capacity (SWC), respectively. Osmotic potential, water saturation deficit, (13)C discrimination, and dehydrin accumulation were monitored during sampling of the crowns for proteome analysis. Analysis of the 2D-DIGE gels revealed 105 differentially abundant spots; most were differentially abundant between the controls and drought-treated plants, and 25 spots displayed changes between both drought conditions. Seventy-six protein spots were successfully identified by tandem mass spectrometry. The most frequent functional categories of the identified proteins can be put into the groups of: stress-associated proteins, amino acid metabolism, carbohydrate metabolism, as well as DNA and RNA regulation and processing. Their possible role in the response of barley to drought stress is discussed. Our study has shown that under drought conditions barley cv. Amulet decreased its growth and developmental rates, displayed a shift from aerobic to anaerobic metabolism, and exhibited increased levels of several protective proteins. Comparison of the two drought treatments revealed plant acclimation to milder drought (35% SWC); but plant damage under more severe drought treatment (30% SWC). The results obtained revealed that cv. Amulet is sensitive to drought stress. Additionally, four spots revealing a continuous and significant increase with decreasing SWC (UDP-glucose 6-dehydrogenase, glutathione peroxidase, and two non-identified) could be good candidates for testing of their protein phenotyping capacity together with proteins that were significantly distinguished in both drought treatments.
- Keywords
- Hordeum vulgare, crown, drought, phenotyping candidate, proteomics,
- Publication type
- Journal Article MeSH