Most cited article - PubMed ID 25505139
A nanostructural basis for gloss of avian eggshells
As the avian embryo grows and develops within the egg, its metabolic rate gradually increases. Obligate avian brood-parasitic birds lay their eggs in the nests of other species to avoid the costs of parental care, and all but one of these brood-parasitic species are altricial at hatching. Yet the chicks of some altricial brood-parasitic species perform the physically demanding task of evicting, stabbing or otherwise killing host progeny within days of hatching. This implies a need for high metabolic rates in the embryo, just as precocial species require. Using flow-through respirometry in situ, we investigated embryonic metabolic rates in diverse avian brood parasite lineages which either kill host offspring (high virulence) or share the nest with host young (low virulence). High-virulence brood parasite embryos exhibited higher overall metabolic rates than both non-parasitic (parental) species and low-virulence parasites. This was driven by significantly elevated metabolic rates around the halfway point of incubation. Additionally, a fine-scale analysis of the embryos of a host-parasitic pair showed faster increases in metabolic rates in the parasite. Together these results suggest that the metabolic patterns of the embryos of high-virulence parasites facilitate their early-life demands.
- Keywords
- brood parasitism, cowbirds, cuckoos, embryo metabolism, honeyguides, respirometry,
- MeSH
- Embryo, Nonmammalian metabolism MeSH
- Energy Metabolism MeSH
- Nesting Behavior MeSH
- Host-Parasite Interactions * MeSH
- Birds * parasitology embryology MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The optimal acceptance threshold hypothesis provides a general predictive framework for testing behavioural responses to discrimination challenges. Decision-makers should respond to a stimulus when the perceived difference between that stimulus and a comparison template surpasses an acceptance threshold. We tested how individual components of a relevant recognition cue (experimental eggs) contributed to behavioural responses of chalk-browed mockingbirds, Mimus saturninus, a frequent host of the parasitic shiny cowbird, Molothrus bonariensis. To do this, we recorded responses to eggs that varied with respect to two components: colour, ranging from bluer to browner than the hosts' own eggs, and spotting, either spotted like their own or unspotted. Although tests of this hypothesis typically assume that decisions are based on perceived colour dissimilarity between own and foreign eggs, we found that decisions were biased toward rejecting browner eggs. However, as predicted, hosts tolerated spotted eggs more than unspotted eggs, irrespective of colour. These results uncover how a single component of a multicomponent cue can shift a host's discrimination threshold and illustrate how the optimal acceptance threshold hypothesis can be used as a framework to quantify the direction and amount of the shift (in avian perceptual units) of the response curve across relevant phenotypic ranges. This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.
- Keywords
- acceptance threshold, brood parasitism, colour perception, egg recognition,
- MeSH
- Color MeSH
- Nesting Behavior * MeSH
- Ovum MeSH
- Cues * MeSH
- Decision Making MeSH
- Recognition, Psychology MeSH
- Color Perception * MeSH
- Songbirds parasitology physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Evolutionary hypotheses regarding the function of eggshell phenotypes, from solar protection through mimicry, have implicitly assumed that eggshell appearance remains static throughout the laying and incubation periods. However, recent research demonstrates that egg coloration changes over relatively short, biologically relevant timescales. Here, we provide the first evidence that such changes impact brood parasite-host eggshell color mimicry during the incubation stage. First, we use long-term data to establish how rapidly the Acrocephalus arundinaceus Linnaeus (great reed warbler) responded to natural parasitic eggs laid by the Cuculus canorus Linnaeus (common cuckoo). Most hosts rejected parasitic eggs just prior to clutch completion, but the host response period extended well into incubation (~10 days after clutch completion). Using reflectance spectrometry and visual modeling, we demonstrate that eggshell coloration in the great reed warbler and its brood parasite, the common cuckoo, changes rapidly, and the extent of eggshell color mimicry shifts dynamically over the host response period. Specifically, 4 days after being laid, the host should notice achromatic color changes to both cuckoo and warbler eggs, while chromatic color changes would be noticeable after 8 days. Furthermore, we demonstrate that the perceived match between host and cuckoo eggshell color worsened over the incubation period. These findings have important implications for parasite-host coevolution dynamics, because host egg discrimination may be aided by disparate temporal color changes in host and parasite eggs.
- Keywords
- Avian vision, brood parasitism, coevolution, common cuckoo, mimicry, pigments,
- Publication type
- Journal Article MeSH
No single hypothesis is likely to explain the diversity in eggshell coloration and patterning across birds, suggesting that eggshell appearance is most likely to have evolved to fulfill many nonexclusive functions. By controlling for nonindependent phylogenetic associations between related species, we describe this diversity using museum eggshells of 71 British breeding passerine species to examine how eggshell pigment composition and concentrations vary with phylogeny and with life-history and nesting ecology traits. Across species, concentrations of biliverdin and protoporphyrin, the two main pigments found in eggshells, were strongly and positively correlated, and both pigments strongly covaried with phylogenetic relatedness. Controlling for phylogeny, cavity-nesting species laid eggs with lower protoporphyrin concentrations in the shell, while higher biliverdin concentrations were associated with thicker eggshells for species of all nest types. Overall, these relationships between eggshell pigment concentrations and the biology of passerines are similar to those previously found in nonpasserine eggs, and imply that phylogenetic dependence must be considered across the class in further explanations of the functional significance of avian eggshell coloration.
- Keywords
- Biliverdin, eggshell coloration, eggshell pigment, phylogeny, protoporphyrin,
- Publication type
- Journal Article MeSH
Pigment-based coloration is a common trait found in a variety of organisms across the tree of life. For example, calcareous avian eggs are natural structures that vary greatly in color, yet just a handful of tetrapyrrole pigment compounds are responsible for generating this myriad of colors. To fully understand the diversity and constraints shaping nature's palette, it is imperative to characterize the similarities and differences in the types of compounds involved in color production across diverse lineages. Pigment composition was investigated in eggshells of eleven paleognath bird taxa, covering several extinct and extant lineages, and shells of four extant species of mollusks. Birds and mollusks are two distantly related, calcareous shell-building groups, thus characterization of pigments in their calcareous structures would provide insights to whether similar compounds are found in different phyla (Chordata and Mollusca). An ethylenediaminetetraacetic acid (EDTA) extraction protocol was used to analyze the presence and concentration of biliverdin and protoporphyrin, two known and ubiquitous tetrapyrrole avian eggshell pigments, in all avian and molluscan samples. Biliverdin was solely detected in birds, including the colorful eggshells of four tinamou species. In contrast, protoporphyrin was detected in both the eggshells of several avian species and in the shells of all mollusks. These findings support previous hypotheses about the ubiquitous deposition of tetrapyrroles in the eggshells of various bird lineages and provide evidence for its presence also across distantly related animal taxa.
- MeSH
- Color * MeSH
- Biliverdine analysis MeSH
- Pigments, Biological analysis MeSH
- Mass Spectrometry MeSH
- Mollusca physiology MeSH
- Pigmentation MeSH
- Protoporphyrins analysis MeSH
- Birds physiology MeSH
- Egg Shell chemistry MeSH
- Chromatography, High Pressure Liquid MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Biliverdine MeSH
- Pigments, Biological MeSH
- Protoporphyrins MeSH
Avian eggshells are variedly coloured, yet only two pigments, biliverdin and protoporphyrin IX, are known to contribute to the dramatic diversity of their colours. By contrast, the contributions of structural or other chemical components of the eggshell are poorly understood. For example, unpigmented eggshells, which appear white to the human eye, vary in their ultraviolet (UV) reflectance, which may be detectable by birds. We investigated the proximate mechanisms for the variation in UV-reflectance of unpigmented bird eggshells using spectrophotometry, electron microscopy, chemical analyses, and experimental manipulations. We specifically tested how UV-reflectance is affected by the eggshell cuticle, the outermost layer of most avian eggshells. The chemical dissolution of the outer eggshell layers, including the cuticle, increased UV-reflectance for only eggshells that contained a cuticle. Our findings demonstrate that the outer eggshell layers, including the cuticle, absorb UV-light, probably because they contain higher levels of organic components and other chemicals, such as calcium phosphates, compared to the predominantly calcite-based eggshell matrix. These data highlight the need to examine factors other than the known pigments in studies of avian eggshell colour.
- Keywords
- Avian eggshells, Biomimicry, Cuticle, Light modulation, Ultraviolet reflectance,
- Publication type
- Journal Article MeSH
Birds' eggshells are renowned for their striking colours and varied patterns. Although often considered exceptionally diverse, we report that avian eggshell coloration, sampled here across the full phylogenetic diversity of birds, occupies only 0.08-0.10% of the avian perceivable colour space. The concentrations of the two known tetrapyrrole eggshell pigments (protoporphyrin and biliverdin) are generally poor predictors of colour, both intra- and interspecifically. Here, we show that the constrained diversity of eggshell coloration can be accurately predicted by colour mixing models based on the relative contribution of both pigments and we demonstrate that the models' predictions can be improved by accounting for the reflectance of the eggshell's calcium carbonate matrix. The establishment of these proximate links between pigmentation and colour will enable future tests of hypotheses on the functions of perceived avian eggshell colours that depend on eggshell chemistry. More generally, colour mixing models are not limited to avian eggshell colours but apply to any natural colour. Our approach illustrates how modelling can aid the understanding of constraints on phenotypic diversity.
- Keywords
- biliverdin, eggshell colour, protoporphyrin, subtractive colour mixing,
- MeSH
- Pigmentation * MeSH
- Birds physiology MeSH
- Egg Shell physiology MeSH
- Visual Perception * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH