Nejvíce citovaný článek - PubMed ID 2553141
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
- Klíčová slova
- antioxidants, inflammation, male infertility, oxidative stress, reductive stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: It is generally accepted that oxidative stress is an important factor in male infertility because it may impair the physiological function of spermatozoa at the molecular level. Nevertheless, although several approaches have been reported, the imbalance between production of reactive oxygen species (ROS) and activity of the antioxidant defense system in semen is difficult to investigate and remains poorly understood. METHODS: This study compares measurement of ROS production in neat semen and in washed spermatozoa obtained from the same ejaculate, and suspended in phosphate buffered saline using exactly the same luminol-mediated chemiluminescence method. Ninety one samples were obtained from males of infertile couples and 34 from volunteers with proven fertility. RESULTS: As expected, ROS levels were markedly lower in neat semen than in washed spermatozoa suspensions where seminal plasma with its potent antioxidant capacity was removed. In the cases of both neat semen and washed spermatozoa, ROS production was lowest in samples from normozoospermic males and highest in samples containing more than half million peroxidase-positive leukocytes per milliliter. For all samples, there was a significant positive correlation between ROS production by neat semen and that by washed spermatozoa suspension. CONCLUSION: Measurement of ROS production in neat semen better reflects actual oxidative status because it detects only the overproduction of ROS which are not effectively scavenged by antioxidant capacity of seminal fluid. The results of our study show a good commutability of both measurements for identification of semen samples with high ROS production. The measurement in neat semen is even less time consuming and therefore easier to implement into laboratory routine.
- MeSH
- analýza spermatu MeSH
- chlorid sodný farmakologie MeSH
- lidé MeSH
- odběr spermií MeSH
- pomocné látky farmakologie MeSH
- reaktivní formy kyslíku analýza metabolismus MeSH
- sperma chemie účinky léků metabolismus MeSH
- uchování spermatu metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- chlorid sodný MeSH
- pomocné látky MeSH
- reaktivní formy kyslíku MeSH