Nejvíce citovaný článek - PubMed ID 25546811
BACKGROUND: Left bundle branch pacing (LBBP) is a novel physiological pacing technique which may serve as an alternative to cardiac resynchronization therapy (CRT) by biventricular pacing (BVP). This study assessed ventricular activation patterns and echocardiographic and clinical outcomes of LBBP and compared this to BVP. METHODS: Fifty consecutive patients underwent LBBP or BVP for CRT. Ventricular activation mapping was obtained by ultra-high-frequency ECG (UHF-ECG). Functional and echocardiographic outcomes and hospitalization for heart failure and all-cause mortality after one year from implantation were evaluated. RESULTS: LBBP resulted in greater resynchronization vs BVP (QRS width: 170 ± 16 ms to 128 ± 20 ms vs 174 ± 15 to 144 ± 17 ms, p = 0.002 (LBBP vs BVP); e-DYS 81 ± 17 ms to 0 ± 32 ms vs 77 ± 18 to 16 ± 29 ms, p = 0.016 (LBBP vs BVP)). Improvement in LVEF (from 28 ± 8 to 42 ± 10 percent vs 28 ± 9 to 36 ± 12 percent, LBBP vs BVP, p = 0.078) was similar. Improvement in NYHA function class (from 2.4 to 1.5 and from 2.3 to 1.5 (LBBP vs BVP)), hospitalization for heart failure and all-cause mortality were comparable in both groups. CONCLUSIONS: Ventricular dyssynchrony imaging is an appropriate way to gain a better insight into activation patterns of LBBP and BVP. LBBP resulted in greater resynchronization (e-DYS and QRS duration) with comparable improvement in LVEF, NYHA functional class, hospitalization for heart failure and all-cause mortality at one year of follow up.
- Klíčová slova
- Biventricular pacing, Cardiac resynchronization therapy, Left bundle branch pacing, Ventricular activation mapping,
- Publikační typ
- časopisecké články MeSH
Inverse ECG imaging methods typically require 32-250 leads to create body surface potential maps (BSPM), limiting their routine clinical use. This study evaluated the accuracy of PaceView inverse ECG method to localize the left or right ventricular (LV and RV, respectively) pacing leads using either a 99-lead BSPM or the 12-lead ECG. A 99-lead BSPM was recorded in patients with cardiac resynchronization therapy (CRT) during sinus rhythm and sequential LV/RV pacing. The non-contrast CT was performed to localize precisely both ECG electrodes and CRT leads. From a BSPM, nine signals were selected to obtain the 12-lead ECG. Both BSPM and 12-lead ECG were used to localize the RV and LV lead, and the localization error was calculated. Consecutive patients with dilated cardiomyopathy, previously implanted with a CRT device, were enrolled (n = 19). The localization error for the RV/LV lead was 9.0 [IQR 4.8-13.6] / 7.7 [IQR 0.0-10.3] mm using the 12-lead ECG and 9.1 [IQR 5.4-15.7] / 9.8 [IQR 8.6-13.1] mm for the BSPM. Thus, the noninvasive lead localization using the 12-lead ECG was accurate enough and comparable to 99-lead BSPM, potentially increasing the capability of 12-lead ECG for the optimization of the LV/RV pacing sites during CRT implant or for the most favorable programming.
The majority of patients tolerate right ventricular pacing well; however, some patients manifest signs of heart failure after pacemaker implantation and develop pacing-induced cardiomyopathy. This is a consequence of non-physiological ventricular activation bypassing the conduction system. Ventricular dyssynchrony was identified as one of the main factors responsible for pacing-induced cardiomyopathy development. Currently, methods that would allow rapid and reliable ventricular dyssynchrony assessment, ideally during the implant procedure, are lacking. Paced QRS duration is an imperfect marker of dyssynchrony, and methods based on body surface mapping, electrocardiographic imaging or echocardiography are laborious and time-consuming, and can be difficult to use during the implantation procedure. However, the ventricular activation sequence can be readily displayed from the chest leads using an ultra-high-frequency ECG. It can be performed during the implantation procedure to visualise ventricular depolarisation and resultant ventricular dyssynchrony during pacing. This information can assist the electrophysiologist in selecting a pacing location that avoids dyssynchronous ventricular activation.
- Klíčová slova
- Pacing-induced cardiomyopathy, cardiac pacing, ultra-high-frequency ECG, ventricular dyssynchrony assessment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper reviews the current status of the knowledge on body surface potential mapping (BSPM) and ECG imaging (ECGI) methods for patient selection, left ventricular (LV) lead positioning, and optimisation of CRT programming, to indicate the major trends and future perspectives for the application of these methods in CRT patients. A systematic literature review using PubMed, Scopus, and Web of Science was conducted to evaluate the available clinical evidence regarding the usage of BSPM and ECGI methods in CRT patients. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement was used as a basis for this review. BSPM and ECGI methods applied in CRT patients were assessed, and quantitative parameters of ventricular depolarisation delivered from BSPM and ECGI were extracted and summarised. BSPM and ECGI methods can be used in CRT in several ways, namely in predicting CRT outcome, in individualised optimisation of CRT device programming, and the guiding of LV electrode placement, however, further prospective or randomised trials are necessary to verify the utility of BSPM for routine clinical practice.
- Klíčová slova
- Body surface potential mapping, CRT, ECG imaging, heart failure,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH