Nejvíce citovaný článek - PubMed ID 25555408
Analysis of 1,2-diol diesters in vernix caseosa by high-performance liquid chromatography - atmospheric pressure chemical ionization mass spectrometry
Wax esters play critical roles in biological systems, serving functions from energy storage to chemical signaling. Their diversity is attributed to variations in alcohol and acyl chains, including their length, branching, and the stereochemistry of double bonds. Traditional analysis by mass spectrometry with collisional activations (CID, HCD) offers insights into acyl chain lengths and unsaturation level. Still, it falls short in pinpointing more nuanced structural features like the position of double bonds. As a solution, this study explores the application of 213-nm ultraviolet photodissociation (UVPD) for the detailed structural analysis of wax esters. It is shown that lithium adducts provide unique fragments as a result of Norrish and Norrish-Yang reactions at the ester moieties and photoinduced cleavages of double bonds. The product ions are useful for determining chain lengths and localizing double bonds. UVPD spectra of various wax esters are presented systematically, and the effect of activation time is discussed. The applicability of tandem mass spectrometry with UVPD is demonstrated for wax esters from natural sources. The UHPLC analysis of jojoba oil proves the compatibility of MS2 UVPD with the chromatography time scale, and a direct infusion is used to analyze wax esters from vernix caseosa. Data shows the potential of UVPD and its combination with CID or HCD in advancing our understanding of wax ester structures.
- Klíčová slova
- Double bond, Mass spectrometry, Photochemistry, UV photodissociation, Wax ester,
- Publikační typ
- časopisecké články MeSH
Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.
- Klíčová slova
- acetonitrile-related adducts, acetylenic lipids, double and triple bond localization, in-source derivatization, mass spectrometry,
- MeSH
- acetonitrily chemie MeSH
- estery chemie izolace a purifikace MeSH
- hmotnostní spektrometrie MeSH
- mastné kyseliny chemie izolace a purifikace MeSH
- molekulární struktura MeSH
- včely chemie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetonitrile MeSH Prohlížeč
- acetonitrily MeSH
- estery MeSH
- mastné kyseliny MeSH
Vernix caseosa, the waxy substance that coats the skin of newborn babies, has an extremely complex lipid composition. We have explored these lipids and identified nonhydroxylated 1-O-acylceramides (1-O-ENSs) as a new class of lipids in vernix caseosa. These ceramides mostly contain saturated C11-C38 ester-linked (1-O) acyls, saturated C12-C39 amide-linked acyls, and C16-C24 sphingoid bases. Because their fatty acyl chains are frequently branched, numerous molecular species were separable and detectable by HPLC/MS: we found more than 2,300 molecular species, 972 of which were structurally characterized. The most abundant 1-O-ENSs contained straight-chain and branched fatty acyls with 20, 22, 24, or 26 carbons in the 1-O position, 24 or 26 carbons in the N position, and sphingosine. The 1-O-ENSs were isolated using multistep TLC and HPLC and they accounted for 1% of the total lipid extract. The molecular species of 1-O-ENSs were separated on a C18 HPLC column using an acetonitrile/propan-2-ol gradient and detected by APCI-MS, and the structures were elucidated by high-resolution and tandem MS. Medium-polarity 1-O-ENSs likely contribute to the cohesiveness and to the waterproofing and moisturizing properties of vernix caseosa.
- Klíčová slova
- ceramides, lipidomics, lipids, mass spectrometry, skin,
- MeSH
- ceramidy metabolismus MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- hmotnostní spektrometrie MeSH
- kůže metabolismus MeSH
- lidé MeSH
- lipidy krev MeSH
- magnetická rezonanční spektroskopie MeSH
- novorozenec MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- vernix caseosa metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- lipidy MeSH
Cholesteryl esters of ω-(O-acyl)-hydroxy FAs (Chl-ωOAHFAs) were identified for the first time in vernix caseosa and characterized using chromatography and MS. Chl-ωOAHFAs were isolated using adsorption chromatography on silica gel and magnesium hydroxide. Their general structure was established using high-resolution and tandem MS of intact lipids, and products of their transesterification and derivatizations. Individual molecular species were characterized using nonaqueous reversed-phase HPLC coupled to atmospheric pressure chemical ionization. The analytes were detected as protonated molecules, and their structures were elucidated in the negative ion mode using controlled thermal decomposition and data-dependent fragmentation. About three hundred molecular species of Chl-ωOAHFAs were identified in this way. The most abundant Chl-ωOAHFAs contained 32:1 ω-hydroxy FA (ω-HFA) and 14:0, 15:0, 16:0, 16:1, and 18:1 FAs. The double bond in the 32:1 ω-HFA was in the n-7 and n-9 positions. Chl-ωOAHFAs are estimated to account for approximately 1-2% of vernix caseosa lipids.
- Klíčová slova
- cholesterol, lipidomics, mass spectrometry, neutral lipids, skin lipids,
- MeSH
- estery cholesterolu metabolismus MeSH
- lidé MeSH
- mastné kyseliny chemie metabolismus MeSH
- novorozenec MeSH
- vernix caseosa metabolismus MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- estery cholesterolu MeSH
- mastné kyseliny MeSH