Most cited article - PubMed ID 25578736
The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L
Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g-1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.
- Keywords
- cold acclimation, deacclimation, ecdysteroids, fenarimol, plant development, vernalization, winter wheat,
- MeSH
- Biological Products chemistry metabolism MeSH
- Chromatography, Liquid methods MeSH
- Ecdysteroids biosynthesis chemistry MeSH
- Plant Leaves drug effects metabolism MeSH
- Molecular Structure MeSH
- Fungicides, Industrial pharmacology MeSH
- Triticum growth & development metabolism MeSH
- Pyrimidines pharmacology MeSH
- Tandem Mass Spectrometry methods MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biological Products MeSH
- Ecdysteroids MeSH
- fenarimol MeSH Browser
- Fungicides, Industrial MeSH
- Pyrimidines MeSH
Plant steroid alcohols, plant sterols, are essential components of cell membranes that perform many functions. Their most prominent function is maintaining membrane semipermeability and regulating its fluidity through their specific interaction with phospholipids and membrane proteins. This work is focused on the study of the interaction of two groups of plant sterols, brassinosteroids (BRs) and phytoecdysteroids (PE). Steroid substances belonging to both groups are important signaling molecules essential for plant growth and development, but while the first group has all the known attributes of plant hormones, the second lacks hormonal function in plants. The aim of this preliminary study was to determine at what concentration level and to what extent substances of this type are able to interact with each other, and thus influence the early growth and development of a plant. It was found that exogenously applied PE 20-hydroxyecdysone (20E) significantly reduced the level of endogenous BRs in four-day-old garden cress (Lepidium sativum) seedlings. On the other hand, exogenously applied BRs, 24-epibrassinolide (epiBL), caused the opposite effect. Endogenous 20E was further detected at the picogram level in garden cress seedlings. Thus, this is the first report indicating that this plant species is PE-positive. The level of endogenous 20E in garden cress seedlings can be decreased by exogenous epiBL, but only at a relatively high concentration of 1·10-6 M in a culture medium. The image analysis of garden cress seedlings revealed that the length of shoot is affected neither by exogenous BRs nor PE, whereas the root length varies depending on the type and concentration of steroid applied.
- Keywords
- Lepidium sativum, brassinosteroids, phytoecdysteroids, plant growth, triterpenoids,
- Publication type
- Journal Article MeSH
The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.
- Keywords
- 20-Hydroxyecdysone, Ecdysteroids, Phytoecdysteroids, Plant hormones, Signalling molecules,
- MeSH
- Ecdysteroids biosynthesis MeSH
- Plant Growth Regulators metabolism MeSH
- Plants metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Ecdysteroids MeSH
- Plant Growth Regulators MeSH