Most cited article - PubMed ID 25831547
An ancestral bacterial division system is widespread in eukaryotic mitochondria
Fornicata, a lineage of a broader and ancient anaerobic eukaryotic clade Metamonada, contains diverse taxa that are ideally suited for evolutionary studies addressing various fundamental biological questions, such as the evolutionary trajectory of mitochondrion-related organelles (MROs), the transition between free-living and endobiotic lifestyles, and the derivation of alternative genetic codes. To this end, we conducted detailed microscopic and transcriptome analyses in a poorly documented strain of an anaerobic free-living marine flagellate, PCS, in the so-called CL3 fornicate lineage. Fortuitously, we discovered that the original culture contained two morphologically similar and closely related CL3 representatives, which doubles the taxon representation within this lineage. We obtained a monoeukaryotic culture of one of them and formally describe it as a new member of the family Caviomonadidae, Euthynema mutabile gen. et sp. nov. In contrast to previously studied caviomonads, the endobiotic Caviomonas mobilis and Iotanema spirale, E. mutabile possesses an ultrastructurally discernible MRO. We sequenced and assembled the transcriptome of E. mutabile, and by sequence subtraction, obtained transcriptome data from the other CL3 clade representative present in the original PCS culture, denoted PCS-ghost. Transcriptome analyses showed that the reassignment of only one of the UAR stop codons to encode Gln previously reported from I. spirale does not extend to its free-living relatives and is likely due to a unique amino acid substitution in I. spirale's eRF1 protein domain responsible for termination codon recognition. The backbone fornicate phylogeny was robustly resolved in a phylogenomic analysis, with the CL3 clade amongst the earliest branching lineages. Metabolic and MRO functional reconstructions of CL3 clade members revealed that all three, including I. spirale, encode homologs of key components of the mitochondrial protein import apparatus and the ISC pathway, indicating the presence of a MRO in all of them. In silico evidence indicates that the organelles of E. mutabile and PCS-ghost host ATP and H2 production, unlike the cryptic MRO of I. spirale. These data suggest that the CL3 clade has experienced a hydrogenosome-to-mitosome transition independent from that previously documented for the lineage leading to Giardia.
- Keywords
- Caviomonadidae, Fornicata, caviomonads, codon reassignment, hydrogenosome, mitochondrial evolution, mitosome,
- Publication type
- Journal Article MeSH
The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.
- Keywords
- Ffh, FtsY, LECA, evolution, mitochondrion, protein targeting, protists, signal recognition particle,
- MeSH
- Bacterial Proteins genetics MeSH
- Biological Evolution * MeSH
- Genome, Mitochondrial * MeSH
- Naegleria genetics MeSH
- Escherichia coli Proteins genetics MeSH
- Receptors, Cytoplasmic and Nuclear genetics MeSH
- Sequence Homology, Nucleic Acid MeSH
- Signal Recognition Particle genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Ffh protein, E coli MeSH Browser
- FtsY protein, Bacteria MeSH Browser
- Escherichia coli Proteins MeSH
- Receptors, Cytoplasmic and Nuclear MeSH
- Signal Recognition Particle MeSH
The type 2 secretion system (T2SS) is present in some Gram-negative eubacteria and used to secrete proteins across the outer membrane. Here we report that certain representative heteroloboseans, jakobids, malawimonads and hemimastigotes unexpectedly possess homologues of core T2SS components. We show that at least some of them are present in mitochondria, and their behaviour in biochemical assays is consistent with the presence of a mitochondrial T2SS-derived system (miT2SS). We additionally identified 23 protein families co-occurring with miT2SS in eukaryotes. Seven of these proteins could be directly linked to the core miT2SS by functional data and/or sequence features, whereas others may represent different parts of a broader functional pathway, possibly also involving the peroxisome. Its distribution in eukaryotes and phylogenetic evidence together indicate that the miT2SS-centred pathway is an ancestral eukaryotic trait. Our findings thus have direct implications for the functional properties of the early mitochondrion.
- MeSH
- Models, Biological MeSH
- Eukaryota classification genetics metabolism MeSH
- Phylogeny MeSH
- Gram-Negative Bacteria classification genetics metabolism MeSH
- Conserved Sequence MeSH
- Mitochondrial Proteins classification genetics metabolism MeSH
- Mitochondria genetics metabolism MeSH
- Evolution, Molecular * MeSH
- Models, Molecular MeSH
- Naegleria classification genetics metabolism MeSH
- Peroxisomes metabolism MeSH
- Protozoan Proteins classification genetics metabolism MeSH
- Type II Secretion Systems classification genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Homology, Amino Acid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Protozoan Proteins MeSH
- Type II Secretion Systems MeSH
ZapE/Afg1 is a component of the inner cell membrane of some eubacteria and the inner mitochondrial membrane of eukaryotes. This protein is involved in FtsZ-dependent division of eubacteria. In the yeast and human mitochondrion, ZapE/Afg1 likely interacts with Oxa1 and facilitates the degradation of mitochondrion-encoded subunits of respiratory complexes. Furthermore, the depletion of ZapE increases resistance to apoptosis, decreases oxidative stress tolerance, and impacts mitochondrial protein homeostasis. It remains unclear whether ZapE is a multifunctional protein, or whether some of the described effects are just secondary phenotypes. Here, we have analyzed the functions of ZapE in Trypanosoma brucei, a parasitic protist, and an important model organism. Using a newly developed proximity-dependent biotinylation approach (BioID2), we have identified the inner mitochondrial membrane insertase Oxa1 among three putative interacting partners of ZapE, which is present in two paralogs. RNAi-mediated depletion of both ZapE paralogs likely affected the function of respiratory complexes I and IV. Consistently, we show that the distribution of mitochondrial ZapE is restricted only to organisms with Oxa1, respiratory complexes, and a mitochondrial genome. We propose that the evolutionarily conserved interaction of ZapE with Oxa1, which is required for proper insertion of many inner mitochondrial membrane proteins, is behind the multifaceted phenotype caused by the ablation of ZapE.
- MeSH
- Biotinylation MeSH
- Gene Deletion * MeSH
- Down-Regulation MeSH
- Eukaryota genetics MeSH
- Phenotype MeSH
- Phylogeny MeSH
- Genome, Mitochondrial MeSH
- Mitochondrial Proteins metabolism MeSH
- Mitochondria metabolism MeSH
- Protozoan Proteins metabolism MeSH
- Electron Transport Complex I metabolism MeSH
- Electron Transport Complex IV metabolism MeSH
- Trypanosoma brucei brucei metabolism MeSH
- Protein Binding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Protozoan Proteins MeSH
- Electron Transport Complex I MeSH
- Electron Transport Complex IV MeSH
BACKGROUND: Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. RESULTS: In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. CONCLUSIONS: As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
- Keywords
- Andalucia godoyi, Jakobids, Mitochondrial evolution, Mitochondrial genome, Mitochondrial proteome, Mitochondrion, Protist,
- MeSH
- Cell Nucleus genetics MeSH
- Eukaryota genetics MeSH
- Genome, Mitochondrial * MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Proteome * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitochondrial Proteins MeSH
- Proteome * MeSH
The shape and number of mitochondria respond to the metabolic needs during the cell cycle of the eukaryotic cell. In the best-studied model systems of animals and fungi, the cells contain many mitochondria, each carrying its own nucleoid. The organelles, however, mostly exist as a dynamic network, which undergoes constant cycles of division and fusion. These mitochondrial dynamics are driven by intricate protein machineries centered around dynamin-related proteins (DRPs). Here, we review recent advances on the dynamics of mitochondria and mitochondrion-related organelles (MROs) of parasitic protists. In contrast to animals and fungi, many parasitic protists from groups of Apicomplexa or Kinetoplastida carry only a single mitochondrion with a single nucleoid. In these groups, mitochondrial division is strictly coupled to the cell cycle, and the morphology of the organelle responds to the cell differentiation during the parasite life cycle. On the other hand, anaerobic parasitic protists such as Giardia, Entamoeba, and Trichomonas contain multiple MROs that have lost their organellar genomes. We discuss the function of DRPs, the occurrence of mitochondrial fusion, and mitophagy in the parasitic protists from the perspective of eukaryote evolution.
- MeSH
- Mitochondrial Dynamics * MeSH
- Parasitic Diseases epidemiology parasitology physiopathology MeSH
- Parasites pathogenicity MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: Mitochondria of opisthokonts undergo permanent fission and fusion throughout the cell cycle. Here, we investigated the dynamics of the mitosomes, the simplest forms of mitochondria, in the anaerobic protist parasite Giardia intestinalis, a member of the Excavata supergroup of eukaryotes. The mitosomes have abandoned typical mitochondrial traits such as the mitochondrial genome and aerobic respiration and their single role known to date is the formation of iron-sulfur clusters. RESULTS: In live experiments, no fusion events were observed between the mitosomes in G. intestinalis. Moreover, the organelles were highly prone to becoming heterogeneous. This suggests that fusion is either much less frequent or even absent in mitosome dynamics. Unlike in mitochondria, division of the mitosomes was absolutely synchronized and limited to mitosis. The association of the nuclear and the mitosomal division persisted during the encystation of the parasite. During the segregation of the divided mitosomes, the subset of the organelles between two G. intestinalis nuclei had a prominent role. Surprisingly, the sole dynamin-related protein of the parasite seemed not to be involved in mitosomal division. However, throughout the cell cycle, mitosomes associated with the endoplasmic reticulum (ER), although none of the known ER-tethering complexes was present. Instead, the ER-mitosome interface was occupied by the lipid metabolism enzyme long-chain acyl-CoA synthetase 4. CONCLUSIONS: This study provides the first report on the dynamics of mitosomes. We show that together with the loss of metabolic complexity of mitochondria, mitosomes of G. intestinalis have uniquely streamlined their dynamics by harmonizing their division with mitosis. We propose that this might be a strategy of G. intestinalis to maintain a stable number of organelles during cell propagation. The lack of mitosomal fusion may also be related to the secondary reduction of the organelles. However, as there are currently no reports on mitochondrial fusion in the whole Excavata supergroup, it is possible that the absence of mitochondrial fusion is an ancestral trait common to all excavates.
- MeSH
- Biological Evolution MeSH
- Dynamins metabolism MeSH
- Endoplasmic Reticulum metabolism MeSH
- Giardia lamblia cytology metabolism MeSH
- Interphase MeSH
- Coenzyme A Ligases metabolism MeSH
- Long-Chain-Fatty-Acid-CoA Ligase MeSH
- Mitochondrial Dynamics * MeSH
- Mitochondria metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Dynamins MeSH
- Coenzyme A Ligases MeSH
- Long-Chain-Fatty-Acid-CoA Ligase MeSH