Nejvíce citovaný článek - PubMed ID 25912796
Arthroderma is the most diverse genus of dermatophytes, and its natural reservoir is considered to be soil enriched by keratin sources. During a study on the diversity of dermatophytes in wild small rodents in the Czech Republic, we isolated several strains of Arthroderma. To explore the diversity and ecological significance of these isolates from rodents (n = 29), we characterised the strains genetically (i.e., sequenced ITS, tubb and tef1α), morphologically, physiologically, and by conducting mating experiments. We then compared the rodent-derived strains to existing ITS sequence data from GenBank and the GlobalFungi Database to further investigate biogeography and the association of Arthroderma species with different types of environments. In total, eight Arthroderma species were isolated from rodents, including four previously described species (A. crocatum, A. cuniculi, A. curreyi, A. quadrifidum) and four new species proposed herein, i.e., A. rodenticum, A. simile, A. zoogenum and A. psychrophilum. The geographical distribution of these newly described species was not restricted to the Czech Republic nor rodents. Additional isolates were obtained from bats and other mammals, reptiles, and soil from Europe, North America, and Asia. Data mining showed that the genus has a diverse ecology, with some lineages occurring relatively frequently in soil, whereas others appeared to be more closely associated with live animals, as we observed in A. rodenticum. Low numbers of sequence reads ascribed to Arthroderma in soil show that the genus is rare in this environment, which supports the hypothesis that Arthroderma spp. are not soil generalists but rather strongly associated with animals and keratin debris. This is the first study to utilise existing metabarcoding data to assess biogeographical, ecological, and diversity patterns in dermatophytes. Citation: Moulíková Š, Kolařík M, Lorch JM, et al. 2022. Wild rodents harbour high diversity of Arthroderma. Persoonia 50: 27- 47. https://doi.org/10.3767/persoonia.2023.50.02.
- Klíčová slova
- Arthroderma, GlobalFungi, geophilic dermatophytes, mating type genes, new taxa, polyphasic taxonomy, wild rodents,
- Publikační typ
- časopisecké články MeSH
This study looked for correlations between molecular identification, clinical manifestation, and morphology for Trichophyton interdigitale and Trichophyton mentagrophytes. For this purpose, a total of 110 isolates were obtained from Czech patients with various clinical manifestations of dermatophytosis. Phenotypic characters were analyzed, and the strains were characterized using multilocus sequence typing. Among the 12 measured/scored phenotypic features, statistically significant differences were found only in growth rates at 37 °C and in the production of spiral hyphae, but none of these features is diagnostic. Correlations were found between T. interdigitale and higher age of patients and between clinical manifestations such as tinea pedis or onychomychosis. The MLST approach showed that internal transcribed spacer (ITS) genotyping of T. mentagrophytes isolates has limited practical benefits because of extensive gene flow between sublineages. Based on our results and previous studies, there are few taxonomic arguments for preserving both species names. The species show a lack of monophyly and unique morphology. On the other hand, some genotypes are associated with predominant clinical manifestations and sources of infections, which keep those names alive. This practice is questionable because the use of both names confuses identification, leading to difficulty in comparing epidemiological studies. The current identification method using ITS genotyping is ambiguous for some isolates and is not user-friendly. Additionally, identification tools such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fail to distinguish these species. To avoid further confusion and to simplify identification in practice, we recommend using the name T. mentagrophytes for the entire complex. When clear differentiation of populations corresponding to T. interdigitale and Trichophyton indotineae is possible based on molecular data, we recommend optionally using a variety rank: T. mentagrophytes var. interdigitale and T. mentagrophytes var. indotineae.
Species in the T. mentagrophytes complex lack support from usual taxonomic methods and simple identification tools are missing or inaccurate. To avoid recurring confusions, we propose naming the entire complex as T. mentagrophytes and optionally use rank variety to classify the observed variability.
- Klíčová slova
- anthropophilic dermatophytes, dermatophytosis, multigene phylogeny, skin infections, zoophilic dermatophytes,
- MeSH
- Arthrodermataceae MeSH
- DNA fungální genetika chemie MeSH
- fenotyp MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA genetika chemie MeSH
- multilokusová sekvenční typizace veterinární MeSH
- sekvenční analýza DNA veterinární MeSH
- tinea * diagnóza veterinární MeSH
- Trichophyton MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA fungální MeSH
- mezerníky ribozomální DNA MeSH
Trichophyton quinckeanum, a zoophilic dermatophyte mostly known as the causative agent of rodent favus, is relatively rarely reported to cause human infections. Indeed, no infections were detected in Czechia between 2012 and 2015 despite routine verification of species identification by ITS rDNA sequencing. By contrast, 25 human and 11 animal cases of infection were documented from December 2016 to December 2020 and the rates tended to grow every following year. Interestingly, most of the cases were reported in the Olomouc region, suggesting a local outbreak. We bring the evidence that human T. quinckeanum infections are most commonly contracted from infected cats or, less frequently, dogs. Although rodents or contaminated soil and environment could be the source of infection to cats and dogs, the occurrence of infections in multiple animals in the same household suggests direct transmission among animals. Confirmation of the identification by molecular methods is highly recommended due to morphological similarity with T. mentagrophytes/T. interdigitale. Antifungal susceptibility testing of isolates to eight antifungals was performed using EUCAST methodology (E.Def 11.0). Among the tested antifungals, terbinafine, amorolfine, ciclopirox and efinaconazole were most potent in vitro and elevated minimum inhibitory concentrations were obtained for fluconazole and ketoconazole.
- Klíčová slova
- EUCAST, MALDI-TOF mass spectrometry, antifungal susceptibility testing, terbinafine, tinea capitis, tinea corporis, zoonotic infections, zoophilic dermatophytes,
- Publikační typ
- časopisecké články MeSH