Nejvíce citovaný článek - PubMed ID 25960390
One of the major functions of the larval salivary glands (SGs) of many Drosophila species is to produce a massive secretion during puparium formation. This so-called proteinaceous glue is exocytosed into the centrally located lumen, and subsequently expectorated, serving as an adhesive to attach the puparial case to a solid substrate during metamorphosis. Although this was first described almost 70 years ago, a detailed description of the morphology and mechanical properties of the glue is largely missing. Its main known physical property is that it is released as a watery liquid that quickly hardens into a solid cement. Here, we provide a detailed morphological and topological analysis of the solidified glue. We demonstrated that it forms a distinctive enamel-like plaque that is composed of a central fingerprint surrounded by a cascade of laterally layered terraces. The solidifying glue rapidly produces crystals of KCl on these alluvial-like terraces. Since the properties of the glue affect the adhesion of the puparium to its substrate, and so can influence the success of metamorphosis, we evaluated over 80 different materials for their ability to adhere to the glue to determine which properties favor strong adhesion. We found that the alkaline Sgs-glue adheres strongly to wettable and positively charged surfaces but not to neutral or negatively charged and hydrophobic surfaces. Puparia formed on unfavored materials can be removed easily without leaving fingerprints or cascading terraces. For successful adhesion of the Sgs-glue, the material surface must display a specific type of triboelectric charge. Interestingly, the expectorated glue can move upwards against gravity on the surface of freshly formed puparia via specific, unique and novel anatomical structures present in the puparial's lateral abdominal segments that we have named bidentia.
- Klíčová slova
- Drosophila, Exocytotic salivary glue secretion, Glue-substrate relationship, Larval salivary glands, Pupariation, Triboelectric series,
- MeSH
- adheziva metabolismus MeSH
- biologická proměna MeSH
- Drosophila metabolismus MeSH
- kukla růst a vývoj MeSH
- larva * růst a vývoj MeSH
- slinné žlázy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adheziva MeSH
Green leaf volatiles (GLVs) are short-chain oxylipins that are emitted from plants in response to stress. Previous studies have shown that oral secretions (OS) of the tobacco hornworm Manduca sexta, introduced into plant wounds during feeding, catalyze the re-arrangement of GLVs from Z-3- to E-2-isomers. This change in the volatile signal however is bittersweet for the insect as it can be used by their natural enemies, as a prey location cue. Here we show that (3Z):(2E)-hexenal isomerase (Hi-1) in M. sexta's OS catalyzes the conversion of the GLV Z-3-hexenal to E-2-hexenal. Hi-1 mutants that were raised on a GLV-free diet showed developmental disorders, indicating that Hi-1 also metabolizes other substrates important for the insect's development. Phylogenetic analysis placed Hi-1 within the GMCβ-subfamily and showed that Hi-1 homologs from other lepidopterans could catalyze similar reactions. Our results indicate that Hi-1 not only modulates the plant's GLV-bouquet but also functions in insect development.
- MeSH
- fylogeneze MeSH
- katalýza MeSH
- listy rostlin MeSH
- Manduca * MeSH
- tělesné tekutiny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We designed a concept of 3D-printed attachment with porous glass filter disks-SLIDE (Sweat sampLIng DevicE) for easy sampling of apocrine sweat. By applying advanced mass spectrometry coupled with the liquid chromatography technique, the complex lipid profiles were measured to evaluate the reproducibility and robustness of this novel approach. Moreover, our in-depth statistical evaluation of the data provided an insight into the potential use of apocrine sweat as a novel and diagnostically relevant biofluid for clinical analyses. Data transformation using probabilistic quotient normalization (PQN) significantly improved the analytical characteristics and overcame the 'sample dilution issue' of the sampling. The lipidomic content of apocrine sweat from healthy subjects was described in terms of identification and quantitation. A total of 240 lipids across 15 classes were identified. The lipid concentrations varied from 10-10 to 10-4 mol/L. The most numerous class of lipids were ceramides (n = 61), while the free fatty acids were the most abundant ones (average concentrations of 10-5 mol/L). The main advantages of apocrine sweat microsampling include: (a) the non-invasiveness of the procedure and (b) the unique feature of apocrine sweat, reflecting metabolome and lipidome of the intracellular space and plasmatic membranes. The SLIDE application as a sampling technique of apocrine sweat brings a promising alternative, including various possibilities in modern clinical practice.
- Klíčová slova
- apocrine sweat, lipidomics, mass spectrometry, microsampling, profiling,
- MeSH
- lidé MeSH
- lipidomika metody MeSH
- lipidy analýza MeSH
- metabolomika metody MeSH
- odběr biologického vzorku * MeSH
- pot chemie MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipidy MeSH
Transcellular trafficking in which various molecules are transported across the interior of a cell, is commonly classified as transcytosis. However, historically this term has been used synonymously with transudation. In both cases transcellular trafficking starts with the internalization of proteins or other compounds on the basal or basolateral side of a cell and continues by their transport across the interior to the apical pole (or vice versa) where they are subsequently released. This allows a cell to release products which are synthesized elsewhere. Here, we discuss the common features of both transcytosis and transudation, and that which differentiates them. It appears that transcytosis and transudation are identical in terms of vesicular import and endosomal sorting of cargo, but completely differ in the re-secretion process. Specialized epithelial cells re-release substantial quantities of the endocytosed material, and often also a great variety. Some recent studies indicate that this is achieved by non-canonical apocrine secretion rather than by the regular vesicular mechanism of exocytosis, and takes place only on the apical pole. This massive re-release of endocytosed proteins, and potentially other compounds via the apocrine mechanism should be considered as transudation, distinct from transcytosis.