Nejvíce citovaný článek - PubMed ID 26007203
Translational regulation shapes the molecular landscape of complex disease phenotypes
Mutations of the TMEM70 gene disrupt the biogenesis of the ATP synthase and represent the most frequent cause of autosomal recessive encephalo-cardio-myopathy with neonatal onset. Patient tissues show isolated defects in the ATP synthase, leading to the impaired mitochondrial synthesis of ATP and insufficient energy provision. In the current study, we tested the efficiency of gene complementation by using a transgenic rescue approach in spontaneously hypertensive rats with the targeted Tmem70 gene (SHR-Tmem70ko/ko), which leads to embryonic lethality. We generated SHR-Tmem70ko/ko knockout rats expressing the Tmem70 wild-type transgene (SHR-Tmem70ko/ko,tg/tg) under the control of the EF-1α universal promoter. Transgenic rescue resulted in viable animals that showed the variable expression of the Tmem70 transgene across the range of tissues and only minor differences in terms of the growth parameters. The TMEM70 protein was restored to 16-49% of the controls in the liver and heart, which was sufficient for the full biochemical complementation of ATP synthase biogenesis as well as for mitochondrial energetic function in the liver. In the heart, we observed partial biochemical complementation, especially in SHR-Tmem70ko/ko,tg/0 hemizygotes. As a result, this led to a minor impairment in left ventricle function. Overall, the transgenic rescue of Tmem70 in SHR-Tmem70ko/ko knockout rats resulted in the efficient complementation of ATP synthase deficiency and thus in the successful genetic treatment of an otherwise fatal mitochondrial disorder.
- Klíčová slova
- ATP synthase deficiency, TMEM70 factor, gene therapy, mitochondria disease, transgenic rescue,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Little is known about the impact of trans-acting genetic variation on the rates with which proteins are synthesized by ribosomes. Here, we investigate the influence of such distant genetic loci on the efficiency of mRNA translation and define their contribution to the development of complex disease phenotypes within a panel of rat recombinant inbred lines. RESULTS: We identify several tissue-specific master regulatory hotspots that each control the translation rates of multiple proteins. One of these loci is restricted to hypertrophic hearts, where it drives a translatome-wide and protein length-dependent change in translational efficiency, altering the stoichiometric translation rates of sarcomere proteins. Mechanistic dissection of this locus across multiple congenic lines points to a translation machinery defect, characterized by marked differences in polysome profiles and misregulation of the small nucleolar RNA SNORA48. Strikingly, from yeast to humans, we observe reproducible protein length-dependent shifts in translational efficiency as a conserved hallmark of translation machinery mutants, including those that cause ribosomopathies. Depending on the factor mutated, a pre-existing negative correlation between protein length and translation rates could either be enhanced or reduced, which we propose to result from mRNA-specific imbalances in canonical translation initiation and reinitiation rates. CONCLUSIONS: We show that distant genetic control of mRNA translation is abundant in mammalian tissues, exemplified by a single genomic locus that triggers a translation-driven molecular mechanism. Our work illustrates the complexity through which genetic variation can drive phenotypic variability between individuals and thereby contribute to complex disease.
- Klíčová slova
- Cardiac hypertrophy, Complex disease, Genetic variation, HXB/BXH rat recombinant inbred panel, Ribosome biogenesis, Ribosome profiling, Ribosomopathy, Spontaneously hypertensive rats (SHR), Translational efficiency, trans QTL mapping,
- MeSH
- biogeneze organel MeSH
- genetická variace MeSH
- iniciace translace peptidového řetězce * MeSH
- kardiomegalie genetika metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- lokus kvantitativního znaku * MeSH
- malá jadérková RNA genetika metabolismus MeSH
- messenger RNA genetika metabolismus MeSH
- myokard metabolismus patologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- potkani inbrední SHR MeSH
- potkani transgenní MeSH
- regulace genové exprese MeSH
- ribozomální proteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus patologie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sarkomery metabolismus patologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá jadérková RNA MeSH
- messenger RNA MeSH
- ribozomální proteiny MeSH