Nejvíce citovaný článek - PubMed ID 26138689
NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis
The posttranslational Ca2+-dependent "clip-and-link" activity of large repeat-in-toxin (RTX) proteins starts by Ca2+-dependent structural rearrangement of a highly conserved self-processing module (SPM). Subsequently, an internal aspartate-proline (Asp-Pro) peptide bond at the N-terminal end of SPM breaks, and the liberated C-terminal aspartyl residue can react with a free ε-amino group of an adjacent lysine residue to form a new isopeptide bond. Here, we report a solution structure of the calcium-loaded SPM (Ca-SPM) derived from the FrpC protein of Neisseria meningitidis The Ca-SPM structure defines a unique protein architecture and provides structural insight into the autocatalytic cleavage of the Asp-Pro peptide bond through a "twisted-amide" activation. Furthermore, in-frame deletion of the SPM domain from the ApxIVA protein of Actinobacillus pleuropneumoniae attenuated the virulence of this porcine pathogen in a pig respiratory challenge model. We hypothesize that the Ca2+-dependent clip-and-link activity represents an unconventional strategy for Gram-negative pathogens to adhere to the host target cell surface.IMPORTANCE The Ca2+-dependent clip-and-link activity of large repeat-in-toxin (RTX) proteins is an exceptional posttranslational process in which an internal domain called a self-processing module (SPM) mediates Ca2+-dependent processing of a highly specific aspartate-proline (Asp-Pro) peptide bond and covalent linkage of the released aspartyl to an adjacent lysine residue through an isopeptide bond. Here, we report the solution structures of the Ca2+-loaded SPM (Ca-SPM) defining the mechanism of the autocatalytic cleavage of the Asp414-Pro415 peptide bond of the Neisseria meningitidis FrpC exoprotein. Moreover, deletion of the SPM domain in the ApxIVA protein, the FrpC homolog of Actinobacillus pleuropneumoniae, resulted in attenuation of virulence of the bacterium in a pig infection model, indicating that the Ca2+-dependent clip-and-link activity plays a role in the virulence of Gram-negative pathogens.
- Klíčová slova
- RTX toxins, cell adhesion, clip-and-link, host-pathogen interactions, nuclear magnetic resonance,
- MeSH
- Actinobacillus pleuropneumoniae chemie patogenita MeSH
- bakteriální proteiny chemie genetika MeSH
- bakteriální toxiny chemie MeSH
- infekce bakteriemi rodu Actinobacillus veterinární MeSH
- membránové proteiny chemie MeSH
- Neisseria meningitidis chemie MeSH
- posttranslační úpravy proteinů * MeSH
- prasata MeSH
- vápník metabolismus MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ApxIVA protein, Actinobacillus pleuropneumoniae MeSH Prohlížeč
- bakteriální proteiny MeSH
- bakteriální toxiny MeSH
- frpC protein, Neisseria meningitidis MeSH Prohlížeč
- membránové proteiny MeSH
- vápník MeSH
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
- MeSH
- bakteriální proteiny chemie genetika MeSH
- buněčná adheze genetika MeSH
- difrakce rentgenového záření MeSH
- lidé MeSH
- lipoproteiny chemie metabolismus MeSH
- membránové proteiny chemie genetika MeSH
- Neisseria meningitidis chemie genetika MeSH
- periplazmatické vazebné proteiny chemie metabolismus MeSH
- proteiny vázající železo chemie metabolismus MeSH
- proteiny vnější bakteriální membrány metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- železo chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- frpC protein, Neisseria meningitidis MeSH Prohlížeč
- lipoproteiny MeSH
- membránové proteiny MeSH
- periplazmatické vazebné proteiny MeSH
- proteiny vázající železo MeSH
- proteiny vnější bakteriální membrány MeSH
- železo MeSH
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The 'AC to Hly-linking segment' thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.
- MeSH
- adenylátcyklasový toxin chemie genetika metabolismus MeSH
- adenylátcyklasy chemie genetika MeSH
- AMP cyklický metabolismus MeSH
- Bordetella pertussis chemie patogenita MeSH
- hemolyziny genetika MeSH
- lidé MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- perforin chemie MeSH
- permeabilita buněčné membrány účinky léků MeSH
- pertuse genetika mikrobiologie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- adenylátcyklasy MeSH
- AMP cyklický MeSH
- hemolyziny MeSH
- lipidové dvojvrstvy MeSH
- perforin MeSH