Nejvíce citovaný článek - PubMed ID 26206782
This comprehensive study provides insight into the antibacterial action of a recently published 2-chloro-N-(oxazol-2-yl)isonicotinamide (AB15), intending to assess its potential as a candidate adjuvant molecule to support existing antibacterial drugs. Within the determination of the antibacterial effect, a promising activity against a member of the ESKAPE group with reduced treatment options, biofilm producer, Acinetobacter baumannii, was recognized (MIC of AB15 ranged from 15.63 to 62.5 µM). In addition, AB15 exhibited bactericidal activity and non/low-toxicity in vitro (IC50 > 1000 µM using HK-2 cells) and in vivo (LD50 > 500 mg/kg of body weight of the Galleria mellonella larvae, for both intra-hemocoel and per oral administration routes). Checkerboard assay revealed additive and synergistic interactions of AB15 and last-resort antibiotic drug, colistin (CST). Moreover, attention was also given to a frequently overlooked antibiofilm activity - the ability to suppress bacterial dissemination from microbial biofilms, and parameter MBDC (minimum biofilm dissemination concentration) was introduced. The study of the antibiofilm activity of AB15 and CST, both acting individually, or in AB15 + CST combination, revealed that AB15 has significant potential to suppress bacterial dissemination from biofilm formed by a clinical isolate Acinetobacter baumannii and that it contributes to this effect when combined with CST. Finally, AB15 + CST combination demonstrated significantly greater biocompatibility towards human erythrocytes than CST acting individually at an equivalent antibiofilm-effective concentration. The role of AB15 as a promising adjuvant molecule to CST is also supported by its distinct mechanism of action, which reduces the risk of antimicrobial resistance emergence. To conclude, AB15 exhibits several essential attributes that support its designation as a promising antibiotic adjuvant.
- Klíčová slova
- Acinetobacter baumannii, 2-aminooxazole, Anti-biofilm activity, Antimicrobial resistance, Checkerboard synergy study,
- MeSH
- Acinetobacter baumannii * účinky léků fyziologie MeSH
- antibakteriální látky * farmakologie MeSH
- biofilmy účinky léků MeSH
- buněčné linie MeSH
- infekce bakteriemi rodu Acinetobacter farmakoterapie mikrobiologie MeSH
- kolistin * farmakologie MeSH
- larva účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- můry MeSH
- oxazoly * farmakologie chemie MeSH
- synergismus léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- kolistin * MeSH
- oxazoly * MeSH
Colistin resistance represents a mounting global health concern, particularly alarming in the face of multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacterial infections. As a polymyxin-class antibiotic, colistin has long served as a critical last-line defence against severe Gram-negative infections caused by pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. However, its increasing and, at times, indiscriminate use has driven the emergence of resistant strains, thereby compromising its clinical utility.Mechanistically, colistin resistance arises from diverse genetic adaptations that alter the bacterial outer membrane, diminishing the drug's binding affinity. Prominent among these are modifications to lipopolysaccharides (LPS), including the incorporation of cationic groups that neutralise the membrane's negative charge, effectively impeding colistin interaction. In addition to chromosomal mutations, resistance is often mediated through horizontal gene transfer-most notably via mobile colistin resistance (mcr) genes-which facilitates rapid dissemination among bacterial populations.To counter this growing threat, innovative therapeutic strategies are urgently needed. These include the development of novel antibiotics with distinct mechanisms of action, synergistic combination regimens (e.g., colistin paired with potentiating agents), and the exploration of alternative modalities such as bacteriophage therapy. Gene-editing technologies like CRISPR-Cas9 also offer a promising frontier for targeting resistance determinants directly at the genetic level.Equally important are robust antimicrobial stewardship programmes and comprehensive surveillance systems to monitor resistance trends and guide rational antibiotic use. Ultimately, overcoming colistin resistance demands a multifaceted and integrative approach-one that merges scientific innovation with global public health initiatives.
- Klíčová slova
- AMR, Colistin, Efflux pump, Mcr,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH