Nejvíce citovaný článek - PubMed ID 26218075
Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries
Restrictions on the use of antibiotics in pigs lead to the continuous search for new probiotics serving as an alternative to antibiotics. One of the key parameters for probiotic bacteria selection is the absence of horizontally transmissible resistance genes. The aim of our study was to determine antibiotic susceptibility profiles in 28 Lactobacillus amylovorus isolates derived from the digestive tract of wild boars and farm pigs by means of the broth microdilution method and whole genome sequencing (WGS). We revealed genetic resistance determinants and examined sequences flanking resistance genes in these strains. Our findings indicate that L. amylovorus strains from domestic pigs are predominantly resistant to tetracycline, erythromycin and ampicillin. WGS analysis of horizontally transmissible genes revealed only three genetic determinants (tetW, ermB and aadE) of which all tetW and ermB genes were present only in strains derived from domestic pigs. Sequence analysis of coding sequences (CDS) in the neighborhood of the tetW gene revealed the presence of site-specific recombinase (xerC/D), site-specific DNA recombinase (spoIVCA) or DNA-binding transcriptional regulator (xre), usually directly downstream of the tetW gene. In the case of ermB, CDS for omega transcriptional repressor or mobilization protein were detected upstream of the ermB gene.
- Klíčová slova
- Lactobacillus amylovorus, antibiotic resistance, domestic pigs, ermB, tetW, wild boars,
- Publikační typ
- časopisecké články MeSH
Antibiotic resistance in bacterial pathogens or several indicator bacteria is commonly studied but the extent of antibiotic resistance in bacterial commensals colonising the intestinal tract is essentially unknown. In this study, we aimed to investigate the presence of horizontally acquired antibiotic resistance genes among chicken gut microbiota members in 259 isolates with known whole genomic sequences. Altogether 124 isolates contained at least one gene coding for antibiotic resistance. Genes coding for the resistance to tetracyclines (detected in 101 isolates), macrolide-lincosamide-streptogramin B antibiotics (28 isolates) and aminoglycosides (25 isolates) were the most common. The most frequent tetracycline resistance genes were tet(W), tet(32), tet(O) and tet(Q). Lachnospiraceae and Ruminococcaceae frequently encoded tet(W). Lachnospiraceae commonly coded also for tet(32) and tet(O). The tet(44) gene was associated with Erysipelotrichaceae and tet(Q) was detected in the genomes of Bacteroidaceae and Porphyromonadaceae. Without any bias we have shown that antibiotic resistance is quite common in gut commensals. However, a comparison of codon usage showed that the above-mentioned families represent the most common current reservoirs but probably not the original host of the detected resistances.
- MeSH
- antibakteriální látky * MeSH
- antibiotická rezistence genetika MeSH
- Bacteria * klasifikace genetika MeSH
- bakteriální geny * MeSH
- kur domácí mikrobiologie MeSH
- střevní mikroflóra genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky * MeSH
Bacteroidaceae are common gut microbiota members in all warm-blooded animals. However, if Bacteroidaceae are to be used as probiotics, the species selected for different hosts should reflect the natural distribution. In this study, we therefore evaluated host adaptation of bacterial species belonging to the family Bacteroidaceae. B. dorei, B. uniformis, B. xylanisolvens, B. ovatus, B. clarus, B. thetaiotaomicron and B. vulgatus represented human-adapted species while B. gallinaceum, B. caecigallinarum, B. mediterraneensis, B. caecicola, M. massiliensis, B. plebeius and B. coprocola were commonly detected in chicken but not human gut microbiota. There were 29 genes which were present in all human-adapted Bacteroides but absent from the genomes of all chicken isolates, and these included genes required for the pentose cycle and glutamate or histidine metabolism. These genes were expressed during an in vitro competitive assay, in which human-adapted Bacteroides species overgrew the chicken-adapted isolates. Not a single gene specific for the chicken-adapted species was found. Instead, chicken-adapted species exhibited signs of frequent horizontal gene transfer, of KUP, linA and sugE genes in particular. The differences in host adaptation should be considered when the new generation of probiotics for humans or chickens is designed.
- Klíčová slova
- Bacteroides, caecum, chicken, glutamate decarboxylase, human, microbiome, microbiota, pentose cycle,
- Publikační typ
- časopisecké články MeSH
Studies analyzing the composition of gut microbiota are quite common at present, mainly due to the rapid development of DNA sequencing technologies within the last decade. This is valid also for chickens and their gut microbiota. However, chickens represent a specific model for host-microbiota interactions since contact between parents and offspring has been completely interrupted in domesticated chickens. Nearly all studies describe microbiota of chicks from hatcheries and these chickens are considered as references and controls. In reality, such chickens represent an extreme experimental group since control chicks should be, by nature, hatched in nests in contact with the parent hen. Not properly realising this fact and utilising only 16S rRNA sequencing results means that many conclusions are of questionable biological relevance. The specifics of chicken-related gut microbiota are therefore stressed in this review together with current knowledge of the biological role of selected microbiota members. These microbiota members are then evaluated for their intended use as a form of next-generation probiotics.
- Klíčová slova
- Bacteroidetes, Firmicutes, caecum, chicken, development, faecal, gut microbiota, ileum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Different housing systems can be used in pig production and little is known about their effect on gut microbiota composition. In this study we characterized fecal microbiota by sequencing the rRNA genes in sows kept during gestation in conventional pens with a slatted floor and in enriched pens with a floor covered with deep straw. After farrowing, microbiota of 1- and 4-day-old piglets were also monitored. Microbiota of sows from the enriched system contained significantly more Prevotella, Parabacteroides, CF231, Phascolarctobacterium, Fibrobacter, Anaerovibrio and YRC22 and significantly less Lactobacillus, Bulleidia, Lachnospira, Dorea, Ruminococcus and Oscillospira than microbiota of sows from the conventional system. The Firmicutes to Bacteroidetes ratio was 0.96 in the microbiota of sows kept in the enriched pens and this increased to 1.66 in the microbiota of sows kept in the conventional system. The production system therefore influenced microbiota composition, most likely due the ingestion of the straw. The microbiota of 1- and 4-day-old piglets differed from the microbiota of sows and sows therefore did not represent the most important source for their colonization in early days of life.
- MeSH
- bydlení zvířat * MeSH
- chov zvířat * MeSH
- chování zvířat * MeSH
- feces mikrobiologie MeSH
- mikrobiota fyziologie MeSH
- novorozená zvířata MeSH
- prasata MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH