Most cited article - PubMed ID 26574283
Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit
There has been a growing interest in quantitative predictions of the intermolecular binding energy of large complexes. One of the most important quantum chemical techniques capable of such predictions is the domain-based local pair natural orbital (DLPNO) scheme for the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)], whose results are extrapolated to the complete basis set (CBS) limit. Here, the DLPNO-based focal-point method is devised with the aim of obtaining CBS-extrapolated values that are very close to their canonical CCSD(T)/CBS counterparts, and thus may serve for routinely checking a performance of less expensive computational methods, for example, those based on the density-functional theory (DFT). The efficacy of this method is demonstrated for several sets of noncovalent complexes with varying amounts of the electrostatics, induction, and dispersion contributions to binding (as revealed by accurate DFT-based symmetry-adapted perturbation theory (SAPT) calculations). It is shown that when applied to dimeric models of poly(3-hydroxybutyrate) chains in its two polymorphic forms, the DLPNO-CCSD(T) and DFT-SAPT computational schemes agree to within about 2 kJ/mol of an absolute value of the interaction energy. These computational schemes thus should be useful for a reliable description of factors leading to the enthalpic stabilization of extended systems.
- Keywords
- CCSD(T), DFT-SAPT, DLPNO, intermolecular binding, noncovalent interactions,
- MeSH
- Cost-Benefit Analysis MeSH
- Quantum Theory * MeSH
- Static Electricity MeSH
- Density Functional Theory MeSH
- Thermodynamics MeSH
- Publication type
- Journal Article MeSH
The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
- MeSH
- Cytosine chemistry MeSH
- Potassium MeSH
- Magnesium MeSH
- Ions chemistry MeSH
- Cations chemistry MeSH
- Nucleic Acid Conformation MeSH
- Ligands MeSH
- Mutation MeSH
- Neomycin MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Base Pairing MeSH
- Riboswitch * MeSH
- Molecular Dynamics Simulation MeSH
- Uracil chemistry MeSH
- Binding Sites MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytosine MeSH
- Potassium MeSH
- Magnesium MeSH
- Ions MeSH
- Cations MeSH
- Ligands MeSH
- Neomycin MeSH
- Riboswitch * MeSH
- Uracil MeSH
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
- MeSH
- DNA chemistry MeSH
- Catalysis MeSH
- Nucleic Acid Conformation * MeSH
- Computer Simulation MeSH
- RNA chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- DNA MeSH
- RNA MeSH
The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA-RNA and RNA-protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale, enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base-phosphate and/or sugar-phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.
- MeSH
- Nucleic Acid Conformation MeSH
- RNA chemistry metabolism MeSH
- RNA Folding MeSH
- Molecular Dynamics Simulation * MeSH
- RNA Stability MeSH
- Static Electricity MeSH
- Temperature MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA MeSH