Most cited article - PubMed ID 26724189
Cardioprotective effects of inorganic nitrate/nitrite in chronic anthracycline cardiotoxicity: Comparison with dexrazoxane
The bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.
- MeSH
- Anthracyclines adverse effects MeSH
- Dexrazoxane chemistry pharmacology MeSH
- Diketopiperazines chemistry pharmacology MeSH
- DNA Topoisomerases, Type II metabolism MeSH
- Topoisomerase II Inhibitors chemistry pharmacology MeSH
- Myocytes, Cardiac drug effects metabolism MeSH
- Cardiotonic Agents chemistry pharmacology MeSH
- Cardiotoxicity drug therapy metabolism MeSH
- Rabbits MeSH
- Piperazine chemistry pharmacology MeSH
- Prodrugs chemistry pharmacology MeSH
- Razoxane chemistry pharmacology MeSH
- Water chemistry MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 4,4'-(1,2-dimethyl-1,2-ethanediyl)bis-2,6-piperazinedione MeSH Browser
- Anthracyclines MeSH
- Dexrazoxane MeSH
- Diketopiperazines MeSH
- DNA Topoisomerases, Type II MeSH
- Topoisomerase II Inhibitors MeSH
- Cardiotonic Agents MeSH
- Piperazine MeSH
- Prodrugs MeSH
- Razoxane MeSH
- Water MeSH
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
- Keywords
- dysrhythmia, heart failure, hypertension, myocardial infarction, stroke,
- MeSH
- Alkaloids adverse effects MeSH
- Amphetamines adverse effects MeSH
- Anti-Arrhythmia Agents adverse effects MeSH
- Anti-Inflammatory Agents, Non-Steroidal adverse effects MeSH
- Adrenergic beta-Antagonists adverse effects MeSH
- Calcium Channel Blockers adverse effects MeSH
- Stroke drug therapy MeSH
- Digoxin adverse effects MeSH
- Hormones adverse effects MeSH
- Cardiovascular Diseases chemically induced drug therapy MeSH
- Cardiovascular System drug effects MeSH
- Cocaine adverse effects MeSH
- Humans MeSH
- Antineoplastic Agents adverse effects MeSH
- Heart Rate drug effects MeSH
- Steroids adverse effects MeSH
- Vascular Endothelial Growth Factor A MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Alkaloids MeSH
- Amphetamines MeSH
- Anti-Arrhythmia Agents MeSH
- Anti-Inflammatory Agents, Non-Steroidal MeSH
- Adrenergic beta-Antagonists MeSH
- Calcium Channel Blockers MeSH
- cathinone MeSH Browser
- Digoxin MeSH
- Hormones MeSH
- Cocaine MeSH
- Antineoplastic Agents MeSH
- Steroids MeSH
- Vascular Endothelial Growth Factor A MeSH