Nejvíce citovaný článek - PubMed ID 26844624
Direct communication of the spinal subarachnoid space with the rat dorsal root ganglia
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.
- Klíčová slova
- AMD3100, IL-6, STAT3, axon regeneration, pre-conditioning, sciatic nerve, transection,
- MeSH
- benzylaminy MeSH
- chemokin CXCL12 * metabolismus MeSH
- cyklamy farmakologie MeSH
- heterocyklické sloučeniny farmakologie MeSH
- interleukin-6 metabolismus MeSH
- krysa rodu Rattus MeSH
- nemoci sedacího nervu metabolismus MeSH
- nervové receptory * metabolismus MeSH
- nervus ischiadicus * zranění metabolismus MeSH
- potkani Sprague-Dawley MeSH
- receptory CXCR4 * metabolismus MeSH
- regenerace nervu * MeSH
- signální transdukce * MeSH
- spinální ganglia * metabolismus MeSH
- transkripční faktor STAT3 * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- benzylaminy MeSH
- chemokin CXCL12 * MeSH
- CXCL12 protein, rat MeSH Prohlížeč
- Cxcr4 protein, rat MeSH Prohlížeč
- cyklamy MeSH
- heterocyklické sloučeniny MeSH
- interleukin-6 MeSH
- plerixafor MeSH Prohlížeč
- receptory CXCR4 * MeSH
- Stat3 protein, rat MeSH Prohlížeč
- transkripční faktor STAT3 * MeSH
To assess the potential role of IL-6 in sciatic nerve injury-induced activation of a pro-regenerative state in remote dorsal root ganglia (DRG) neurons, we compared protein levels of SCG-10 and activated STAT3, as well as axon regeneration in IL-6 knockout (IL-6ko) mice and their wild-type (WT) counterparts. Unilateral sciatic nerve compression and transection upregulated SCG-10 protein levels and activated STAT3 in DRG neurons not only in lumbar but also in cervical segments of WT mice. A pro-regenerative state induced by prior sciatic nerve lesion in cervical DRG neurons of WT mice was also shown by testing for axon regeneration in crushed ulnar nerve. DRG neurons from IL-6ko mice also displayed bilaterally increased levels of SCG-10 and STAT3 in both lumbar and cervical segments after sciatic nerve lesions. However, levels of SCG-10 protein in lumbar and cervical DRG of IL-6ko mice were significantly lower than those of their WT counterparts. Sciatic nerve injury induced a lower level of SCG-10 in cervical DRG of IL-6ko than WT mice, and this correlates with significantly shorter regeneration of axons distal to the crushed ulnar nerve. These results suggest that IL-6 contributes, at the very least, to initiation of the neuronal regeneration program in remote DRG neurons after unilateral sciatic nerve injury.
- Klíčová slova
- Primary sensory neuron, SCG10, STAT3, Sciatic nerve lesion, Ulnar nerve crush,
- MeSH
- imunohistochemie MeSH
- interleukin-6 analýza nedostatek metabolismus MeSH
- intracelulární signální peptidy a proteiny analýza MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- neurony chemie cytologie metabolismus patologie MeSH
- poranění periferního nervu metabolismus patologie chirurgie MeSH
- proteiny vázající vápník MeSH
- regenerace nervu * MeSH
- spinální ganglia cytologie metabolismus patologie chirurgie MeSH
- stathmin MeSH
- transkripční faktor STAT3 analýza MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- interleukin-6 MeSH
- intracelulární signální peptidy a proteiny MeSH
- proteiny vázající vápník MeSH
- Stat3 protein, mouse MeSH Prohlížeč
- stathmin MeSH
- Stmn2 protein, mouse MeSH Prohlížeč
- transkripční faktor STAT3 MeSH
The primary sensory neurons of dorsal root ganglia (DRG) are a very useful model to study the neuronal regenerative program that is a prerequisite for successful axon regeneration after peripheral nerve injury. Seven days after a unilateral sciatic nerve injury by compression or transection, we detected a bilateral increase in growth-associated protein-43 (GAP-43) and superior cervical ganglion-10 (SCG-10) mRNA and protein levels not only in DRG neurons of lumbar spinal cord segments (L4-L5) associated with injured nerve, but also in remote cervical segments (C6-C8). The increase in regeneration-associated proteins in the cervical DRG neurons was associated with the greater length of regenerated axons 1 day after ulnar nerve crush following prior sciatic nerve injury as compared to controls with only ulnar nerve crush. The increased axonal regeneration capacity of cervical DRG neurons after a prior conditioning sciatic nerve lesion was confirmed by neurite outgrowth assay of in vitro cultivated DRG neurons. Intrathecal injection of IL-6 or a JAK2 inhibitor (AG490) revealed a role for the IL-6 signaling pathway in activating the pro-regenerative state in remote DRG neurons. Our results suggest that the pro-regenerative state induced in the DRG neurons non-associated with the injured nerve reflects a systemic reaction of these neurons to unilateral sciatic nerve injury.
- Klíčová slova
- GAP-43, IL-6, SCG-10, neurite outgrowth assay, primary sensory neurons, pro-regenerative state, ulnar nerve crush, unilateral nerve injury,
- Publikační typ
- časopisecké články MeSH
Unilateral sciatic nerve compression (SNC) or complete sciatic nerve transection (CSNT), both varying degrees of nerve injury, induced activation of STAT3 bilaterally in the dorsal root ganglia (DRG) neurons of lumbar (L4-L5) as well as cervical (C6-C8) spinal cord segments. STAT3 activation was by phosphorylation at the tyrosine-705 (Y705) and serine-727 (S727) positions and was followed by their nuclear translocation. This is the first evidence of STAT3(S727) activation together with the well-known activation of STAT3(Y705) in primary sensory neurons upon peripheral nerve injury. Bilateral activation of STAT3 in DRG neurons of spinal segments anatomically both associated as well as non-associated with the injured nerve indicates diffusion of STAT3 activation inducers along the spinal cord. Increased levels of IL-6 protein in the CSF following nerve injury as well as activation and nuclear translocation of STAT3 in DRG after intrathecal injection of IL-6 shows that this cytokine, released into the subarachnoid space can penetrate the DRG to activate STAT3. Previous results on increased bilateral IL-6 synthesis and the present manifestation of STAT3 activation in remote DRG following unilateral sciatic nerve injury may reflect a systemic reaction of the DRG neurons to nerve injury.
- Klíčová slova
- Dorsal root ganglia, Neuroinflammation, Peripheral nerve injury, Systemic reaction,
- MeSH
- aktivní transport - buněčné jádro MeSH
- buněčné jádro metabolismus MeSH
- fosforylace MeSH
- fosfoserin metabolismus MeSH
- fosfotyrosin metabolismus MeSH
- krysa rodu Rattus MeSH
- nemoci sedacího nervu metabolismus patologie MeSH
- nervové receptory metabolismus patologie MeSH
- potkani Wistar MeSH
- spinální ganglia metabolismus patologie MeSH
- transkripční faktor STAT3 chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfoserin MeSH
- fosfotyrosin MeSH
- Stat3 protein, rat MeSH Prohlížeč
- transkripční faktor STAT3 MeSH