Most cited article - PubMed ID 26862050
A novel strategy for the determination of polycyclic aromatic hydrocarbon monohydroxylated metabolites in urine using ultra-high-performance liquid chromatography with tandem mass spectrometry
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that adversely affect human health, mainly through their carcinogenic and mutagenic properties. Monitoring the exposure to PAHs of the inhabitants of air polluted regions is important because of the impact of these pollutants on human health. The aim of this study was to assess the exposure to PAHs of municipal police officers (non-smokers) living in three localities in the Czech Republic (strategically selected according to the level of air pollution) and determine how air pollution impacts personal exposure to PAHs via inhalation. Twenty PAHs were determined in the inhaled air collected from personal air samplers. Simultaneously, the total exposure to PAHs was investigated by evaluating the concentrations of 11 monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in urine samples. Despite the observed differences in the concentrations of PAHs in the air from the personal samplers between the three locations, no statistically significant differences were found in the concentrations of OH-PAHs in the urine samples. Outcomes of this study indicate that inhalation exposure is not the primary source of PAHs exposure for Czech municipal police officers, but that diet may also be an important contributor to total body burden. The levels of OH-PAHs found in urine of Czech municipal police officers were very similar to those found in the urine of the Czech mothers from our previous study. This study provided the data about the body burden of potentially occupationally exposed group that has not yet been studied in the Czech Republic.
- Keywords
- Air pollution, Biomonitoring, Czech Republic, GC–MS/MS, PAHs, Personal air samplers, UHPLC − MS/MS, Urine analysis,
- MeSH
- Biomarkers urine MeSH
- Adult MeSH
- Inhalation Exposure * analysis MeSH
- Air Pollutants * urine MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Police * MeSH
- Polycyclic Aromatic Hydrocarbons * urine MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Biomarkers MeSH
- Air Pollutants * MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
The level of the human body's burden of benzophenone and camphor ultraviolet (UV) filters can be estimated from their urinary levels. The present study describes the implementations and validation of the sensitive analytical method for the analysis of seven benzophenone and two camphor UV filters in urine. Sample preparation includes overnight enzymatic hydrolysis and ethyl acetate extraction followed by purification by dispersive solid-phase extraction using a sorbent Z-Sep. For the analysis, ultra-high performance liquid chromatography coupled with tandem mass spectrometry was used. Validation was performed using a Standard Reference Material® 3673 and an artificially contaminated urine sample. Target analyte recoveries ranged from 79-113% with repeatability expressed as a relative standard deviation of 2-15%. The limits of quantification were between 0.001 and 0.100 ng/mL in urine. This method was subsequently applied to examine the urine samples collected from Czech women. The analytes benzophenone-1 and 4-hydroxy-benzophenone were the most common analytes present in 100% of the samples, whereas benzophenone-3 was quantified in only 90% of the urine samples. The other four determined benzophenone derivatives were quantified in ≤33% of the samples. The derivatives of camphor were not detected in any samples. This method could be applied in biomonitoring studies.
- Keywords
- UHPLC-MS/MS, UV filters, biomonitoring, urine analysis,
- Publication type
- Journal Article MeSH
This study investigates the potential relationship between exposure to polycyclic aromatic hydrocarbons (PAHs), specifically monohydroxylated metabolites (OH-PAHs), in urine, and the prevalence of respiratory diseases in 2-year-old children residing in two locations within the Czech Republic - České Budějovice (control location) and the historically contaminated mining district of Most. Despite current air quality and lifestyle similarities between the two cities, our research aims to uncover potential long-term health effects, building upon previous data indicating distinctive patterns in the Most population. A total of 248 urine samples were analysed for the presence of 11 OH-PAHs. Employing liquid-liquid extraction with ethyl acetate and clean-up through dispersive solid-phase extraction, instrumental analysis was conducted using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The incidence of respiratory diseases was assessed through questionnaires administered by paediatricians. The concentrations of OH-PAHs were elevated in urine samples from 2-year-olds in Most compared to those from České Budějovice. The incidence of respiratory diseases showed statistically significant higher levels of OH-PAHs in children from Most, together with a higher incidence of influenza. This association underlines the impact of environmental PAH exposure on children's respiratory health. It suggests that elevated urinary OH-PAH levels indicate an increased risk of developing respiratory diseases in the affected population. Further studies are needed to clarify the possible long-term health effects and to contribute to sound public health strategies.
- Keywords
- 2-year-old toddlers, Influenza, Monohydroxylated PAH metabolites, Polycyclic aromatic hydrocarbons, Respiratory diseases, Urine,
- MeSH
- Humans MeSH
- Respiratory Tract Diseases epidemiology urine MeSH
- Pilot Projects MeSH
- Polycyclic Aromatic Hydrocarbons * urine MeSH
- Child, Preschool MeSH
- Environmental Exposure adverse effects analysis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Names of Substances
- Polycyclic Aromatic Hydrocarbons * MeSH
Objectives: To analyze the impact of polycyclic aromatic hydrocarbons (PAHs) in ambient air at the time of delivery and five years of age on cognitive development in five year old children. Materials and Methods: Two cohorts of children born in the years 2013 and 2014 from Karvina (Northern Moravia, n = 70) and Ceske Budejovice (Southern Bohemia, n = 99) were studied at the age of five years for their cognitive development related to the exposure to PAHs, determined in the ambient air as the concentration of benzo[a]pyrene (B[a]P) and OH-PAH (hydroxy-PAH) metabolites in urine of the newborns at the time of delivery. As psychological tests, the Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used. Results: Concentrations of B[a]P in the third trimester of mother's pregnancies were 6.1 ± 4.53 ng/m3 in Karvina, and 1.19 ± 1.28 ng/m3 (p < 0.001) in Ceske Budejovice. Neither the outcome of the RCPM test nor the BG test differed between children in Karvina vs. Ceske Budejovice, or boys vs. girls. Cognitive development in five year old children was affected by the higher exposure to PM2.5 during the third trimester in girls in Karvina. Conclusions: We did not observe any significant effect of prenatal PAH exposure on psychological cognitive tests in five year old children.