Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
- Klíčová slova
- Anaplasma, Babesia, Borrelia, Ixodes, Midgut, Rickettsia, Saliva, TBEV, Tick, Vaccine,
- MeSH
- Borrelia MeSH
- infekce přenášené vektorem MeSH
- klíště mikrobiologie virologie MeSH
- klíšťová encefalitida prevence a kontrola MeSH
- kousnutí klíštětem prevence a kontrola MeSH
- lidé MeSH
- lymeská nemoc prevence a kontrola MeSH
- nemoci přenášené klíšťaty prevence a kontrola přenos MeSH
- proteiny členovců imunologie MeSH
- sliny MeSH
- vakcíny imunologie MeSH
- viry klíšťové encefalitidy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny členovců MeSH
- vakcíny MeSH
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
- Klíčová slova
- Anaplasma phagocytophilum, immune response, interactome, phylogeny, regulome, tick, vaccine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Ticks cause massive damage to livestock and vaccines are one sustainable substitute for the acaricides currently heavily used to control infestations. To guide antigen discovery for a vaccine that targets the gamut of parasitic strategies mediated by tick saliva and enables immunological memory, we exploited a transcriptome constructed from salivary glands from all stages of Rhipicephalus microplus ticks feeding on genetically tick-resistant and susceptible bovines. RESULTS: Different levels of host anti-tick immunity affected gene expression in tick salivary glands; we thus selected four proteins encoded by genes weakly expressed in ticks attempting to feed on resistant hosts or otherwise abundantly expressed in ticks fed on susceptible hosts; these sialoproteins mediate four functions of parasitism deployed by male ticks and that do not induce antibodies in naturally infected, susceptible bovines. We then evaluated in tick-susceptible heifers an alum-adjuvanted vaccine formulated with recombinant proteins. Parasite performance (i.e. weight and numbers of females finishing their parasitic cycle) and titres of antigen-specific antibodies were significantly reduced or increased, respectively, in vaccinated versus control heifers, conferring an efficacy of 73.2%; two of the antigens were strong immunogens, rich in predicted T-cell epitopes and challenge infestations boosted antibody responses against them. CONCLUSION: Mining sialotranscriptomes guided by the immunity of tick-resistant hosts selected important targets and infestations boosted immune memory against salivary antigens.
- Klíčová slova
- Anti-tick vaccine, Antigen discovery, Rhipicephalus microplus tick, Salivary proteins, Sialotranscriptome,
- MeSH
- antigeny biosyntéza MeSH
- infestace klíšťaty parazitologie MeSH
- objevování léků MeSH
- proteiny členovců biosyntéza MeSH
- Rhipicephalus fyziologie MeSH
- slinné proteiny a peptidy biosyntéza MeSH
- stanovení celkové genové exprese * MeSH
- vakcíny izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny MeSH
- proteiny členovců MeSH
- slinné proteiny a peptidy MeSH
- vakcíny MeSH