Nejvíce citovaný článek - PubMed ID 26925228
Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
- MeSH
- endocytóza MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové potenciály MeSH
- proteiny vázající GTP metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- auxin receptor, plant MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny vázající GTP MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
- vápník MeSH
The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.
- Klíčová slova
- AUXIN BINDING PROTEIN 1 (ABP1), Arabidopsis, auxin, knock-down mutant, off-target,
- Publikační typ
- časopisecké články MeSH