Most cited article - PubMed ID 27003315
Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region
The impact of bacterial pneumonia on patients with COVID-19 infection remains unclear. This prospective observational monocentric cohort study aims to determine the incidence of bacterial community- and hospital-acquired pneumonia (CAP and HAP) and its effect on mortality in critically ill COVID-19 patients admitted to the intensive care unit (ICU) at University Hospital Olomouc between 1 November 2020 and 31 December 2022. The secondary objectives of this study include identifying the bacterial etiology of CAP and HAP and exploring the capabilities of diagnostic tools, with a focus on inflammatory biomarkers. Data were collected from the electronic information hospital system, encompassing biomarkers, microbiological findings, and daily visit records, and subsequently evaluated by ICU physicians and clinical microbiologists. Out of 171 patients suffering from critical COVID-19, 46 (27%) had CAP, while 78 (46%) developed HAP. Critically ill COVID-19 patients who experienced bacterial CAP and HAP exhibited higher mortality compared to COVID-19 patients without any bacterial infection, with rates of 38% and 56% versus 11%, respectively. In CAP, the most frequent causative agents were chlamydophila and mycoplasma; Enterobacterales, which were multidrug-resistant in 71% of cases; Gram-negative non-fermenting rods; and Staphylococcus aureus. Notably, no strains of Streptococcus pneumoniae were detected, and only a single strain each of Haemophilus influenzae and Moraxella catarrhalis was isolated. The most frequent etiologic agents causing HAP were Enterobacterales and Gram-negative non-fermenting rods. Based on the presented results, commonly used biochemical markers demonstrated poor predictive and diagnostic accuracy. To confirm the diagnosis of bacterial CAP in our patient cohort, it was necessary to assess the initial values of inflammatory markers (particularly procalcitonin), consider clinical signs indicative of bacterial infection, and/or rely on positive microbiological findings. For HAP diagnostics, it was appropriate to conduct regular detailed clinical examinations (with a focus on evaluating respiratory functions) and closely monitor the dynamics of inflammatory markers (preferably Interleukin-6).
- Keywords
- adult respiratory distress syndrome (ARDS), bacterial co- or superinfection, bacterial pneumonia, community-acquired pneumonia (CAP), critical coronavirus disease 19 (COVID-19), etiological agents, hospital-acquired pneumonia (HAP), intensive care unit (ICU), mortality, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),
- Publication type
- Journal Article MeSH
BACKGROUND: Diffuse peritonitis is an acute abdominal condition characterized by high mortality. The main treatment modality is surgery, requiring a subsequent prolonged hospital stay. These patients are, among other things, at risk of developing hospital-acquired pneumonia (HAP), which considerably worsens their treatment outcomes. This study aimed to extend the existing knowledge by providing more detailed microbiological characteristics of complicating HAP in patients with secondary peritonitis, including the identification of isolated bacterial pathogens and their potential sources. METHODS: The 2015-2019 retrospective study comprised all patients with an intraoperatively confirmed diagnosis of secondary diffuse peritonitis who were classified in accordance with the quick Sepsis Related Organ Failure Assessment scoring system. RESULTS: HAP developed in 15% of patients. The 90-day mortality rates were 53% and 24% in patients with and without HAP; respectively. The most frequent pathogens responsible for HAP were Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae complex and Enterococcus faecalis. Multidrug resistance to antibiotics was found in 38% of bacterial pathogens. Clonal spread of these bacterial pathogens among patients was not detected. Rather, the endogenous characteristic of HAP was confirmed. CONCLUSIONS: The initial antibiotic therapy of complicating HAP in patients with secondary peritonitis must be effective mainly against enterobacteria, including strains with the production of ESBL and AmpC beta-lactamases, Pseudomonas aeruginosa and Enterococcus faecalis. The study further highlighted the importance of monitoring the respiratory tract bacterial microflora in patients with secondary peritonitis. The results should be used for initial antibiotic treatment of complicating HAP instances.
- Keywords
- bacteria, etiology, peritonitis, pneumonia,
- Publication type
- Journal Article MeSH
Broad-spectrum antibiotics administered to patients with severe COVID-19 pneumonia pose a risk of infection caused by Clostridioides difficile. This risk is reduced mainly by strict hygiene measures and early de-escalation of antibiotic therapy. Recently, oral vancomycin prophylaxis (OVP) has also been discussed. This retrospective study aimed to assess the prevalence of C. difficile in critical COVID-19 patients staying in an intensive care unit of a tertiary hospital department of anesthesiology, resuscitation, and intensive care from November 2020 to May 2021 and the rates of vancomycin-resistant enterococci (VRE) after the introduction of OVP and to compare the data with those from controls in the pre-pandemic period (November 2018 to May 2019). During the COVID-19 pandemic, there was a significant increase in toxigenic C. difficile rates to 12.4% of patients, as compared with 1.6% in controls. The peak rates were noted in February 2021 (25% of patients), immediately followed by initiation of OVP, changes to hygiene precautions, and more rapid de-escalation of antibiotic therapy. Subsequently, toxigenic C. difficile detection rates started to fall. There was a nonsignificant increase in VRE detected in non-gastrointestinal tract samples to 8.9% in the COVID-19 group, as compared to 5.3% in the control group. Molecular analysis confirmed mainly clonal spread of VRE.
- Keywords
- COVID-19, Clostridioides difficile, ICU, molecular typing of VRE, oral vancomycin prophylaxis, vancomycin-resistant enterococci,
- Publication type
- Journal Article MeSH
Ventilator-associated pneumonia (VAP) is one of the most severe complications affecting mechanically ventilated patients. The condition is caused by microaspiration of potentially pathogenic bacteria from the upper respiratory tract into the lower respiratory tract or by bacterial pathogens from exogenous sources such as healthcare personnel, devices, aids, fluids and air. The aim of our prospective, observational study was to confirm the hypothesis that in the etiology of VAP, an important role is played by etiological agents from the upper airway bacterial microflora. At the same time, we studied the hypothesis that the vertical spread of bacterial pathogens is more frequent than their horizontal spread among patients. A total of 697 patients required mechanical ventilation for more than 48 h. The criteria for VAP were met by 47 patients. Clonality of bacterial isolates from 20 patients was determined by comparing their macrorestriction profiles obtained by pulsed-field gel electrophoresis (PFGE). Among these 20 patients, a total of 29 PFGE pulsotypes of Klebsiella spp. and Escherichia spp. strains were observed. The high variability of clones proves that there was no circulation of bacterial pathogens among hospitalized patients. Our finding confirms the development of VAP as a result of bacterial microaspiration and therefore the endogenous origin of VAP.
- Keywords
- Escherichia spp., Klebsiella spp., clonality, endogenous infection, pulsed-field gel electrophoresis (PFGE), ventilator-associated pneumonia,
- Publication type
- Journal Article MeSH
The article describes activities of an antibiotic center at a university hospital in the Czech Republic and presents the results of antibiotic stewardship program implementation over a period of 10 years. It provides data on the development of resistance of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus to selected antibiotic agents as well as consumption data for various antibiotic classes. The genetic basis of resistance to beta-lactam antibiotics and its clonal spread were also assessed. The study showed significant correlations between aminoglycoside consumption and resistance of Escherichia coli and Klebsiella pneumoniae to gentamicin (r = 0.712, r = 0.869), fluoroquinolone consumption and resistance of Klebsiella pneumoniae to ciprofloxacin (r = 0.896), aminoglycoside consumption and resistance of Pseudomonas aeruginosa to amikacin (r = 0.716), as well as carbapenem consumption and resistance of Pseudomonas aeruginosa to meropenem (r = 0.855). Genotyping of ESBL- positive isolates of Klebsiella pneumoniae and Escherichia coli showed a predominance of CTX-M-type; in AmpC-positive strains, DHA, EBC and CIT enzymes prevailed. Of 19 meropenem-resistant strains of Klebsiella pneumoniae, two were identified as NDM-positive. Clonal spread of these strains was not detected. The results suggest that comprehensive antibiotic stewardship implementation in a healthcare facility may help to maintain the effectiveness of antibiotics against bacterial pathogens. Particularly beneficial is the work of clinical microbiologists who, among other things, approve administration of antibiotics to patients with bacterial infections and directly participate in their antibiotic therapy.
- Keywords
- antibiotic stewardship, clonal spread, consumption of antibiotics, resistance,
- Publication type
- Journal Article MeSH
Enterococci are important bacterial pathogens, and their significance is even greater in the case of vancomycin-resistant enterococci (VRE). The study analyzed the presence of VRE in the gastrointestinal tract (GIT) of hemato-oncological patients. Active screening using selective agars yielded VRE for phenotypic and genotypic analyses. Isolated strains were identified with MALDI-TOF MS, (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry) their susceptibility to antibiotics was tested, and resistance genes (vanA, vanB, vanC-1, vanC2-C3) and genes encoding virulence factors (asa1, gelE, cylA, esp, hyl) were detected. Pulsed-field gel electrophoresis was used to assess the relationship of the isolated strains. Over a period of three years, 103 VanA-type VRE were identified in 1405 hemato-oncological patients. The most frequently detected virulence factor was extracellular surface protein (84%), followed by hyaluronidase (40%). Unique restriction profiles were observed in 33% of strains; clonality was detected in 67% of isolates. The study found that 7% of hemato-oncological patients carried VRE in their GIT. In all cases, the species identified was Enterococcus faecium. No clone persisted for the entire 3-year study period. However, genetically different clusters were observed for shorter periods of time, no longer than eight months, with identical VRE spreading among patients.
- Keywords
- GIT, VRE, clonality, hemato-oncological patients,
- Publication type
- Journal Article MeSH
Hospitalized patients with wounds face an increased risk of infection with multi-drug-resistant nosocomial bacteria. In this study, samples from almost 10,000 patients from big hospitals in Czech Republic with infected wounds were analyzed for the presence of bacterial pathogens. In 7693 patients (78.8%), bacterial etiological agents were identified. Members of the Enterobacterales (37.1%) and Staphyloccus aureus (21.1%) were the most prevalent pathogens. Staphyloccus aureus showed methicillin resistance in 8.6%. Almost half of the Klebsiella pneumoniae isolates were ESBL-positive and 25.6% of the Enterobacter spp. isolates were AmpC-positive. The third most prevalent Pseudomonas aeruginosa showed resistance to 19-32% of the antipseudomonal antibiotics tested. Based on the results, amoxicillin/clavulanic acid, ampicillin/sulbactam or piperacillin/tazobactam combined with gentamicin can be recommended for antibiotic treatment of infected wounds. Once the etiological agent is identified, the therapy should be adjusted according to the species and its resistance.
- Keywords
- nosocomial, resistance, wound infection,
- Publication type
- Journal Article MeSH