Nejvíce citovaný článek - PubMed ID 27246882
Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1
Mineral nutrition is one of the key environmental factors determining plant development and growth. Nitrate is the major form of macronutrient nitrogen that plants take up from the soil. Fluctuating availability or deficiency of this element severely limits plant growth and negatively affects crop production in the agricultural system. To cope with the heterogeneity of nitrate distribution in soil, plants evolved a complex regulatory mechanism that allows rapid adjustment of physiological and developmental processes to the status of this nutrient. The root, as a major exploitation organ that controls the uptake of nitrate to the plant body, acts as a regulatory hub that, according to nitrate availability, coordinates the growth and development of other plant organs. Here, we identified a regulatory framework, where cytokinin response factors (CRFs) play a central role as a molecular readout of the nitrate status in roots to guide shoot adaptive developmental response. We show that nitrate-driven activation of NLP7, a master regulator of nitrate response in plants, fine tunes biosynthesis of cytokinin in roots and its translocation to shoots where it enhances expression of CRFs. CRFs, through direct transcriptional regulation of PIN auxin transporters, promote the flow of auxin and thereby stimulate the development of shoot organs.
- Klíčová slova
- macronutrient, nitrate, plant development,
- MeSH
- cytokininy metabolismus MeSH
- dusičnany * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- půda MeSH
- regulace genové exprese u rostlin MeSH
- signální transdukce MeSH
- výhonky rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytokininy MeSH
- dusičnany * MeSH
- kyseliny indoloctové * MeSH
- půda MeSH
Agricultural sustainability is of foremost importance for maintaining high food production. Irresponsible resource use not only negatively affects agroecology, but also reduces the economic profitability of the production system. Among different resources, soil is one of the most vital resources of agriculture. Soil fertility is the key to achieve high crop productivity. Maintaining soil fertility and soil health requires conscious management effort to avoid excessive nutrient loss, sustain organic carbon content, and minimize soil contamination. Though the use of chemical fertilizers have successfully improved crop production, its integration with organic manures and other bioinoculants helps in improving nutrient use efficiency, improves soil health and to some extent ameliorates some of the constraints associated with excessive fertilizer application. In addition to nutrient supplementation, bioinoculants have other beneficial effects such as plant growth-promoting activity, nutrient mobilization and solubilization, soil decontamination and/or detoxification, etc. During the present time, high energy based chemical inputs also caused havoc to agriculture because of the ill effects of global warming and climate change. Under the consequences of climate change, the use of bioinputs may be considered as a suitable mitigation option. Bioinoculants, as a concept, is not something new to agricultural science, however; it is one of the areas where consistent innovations have been made. Understanding the role of bioinoculants, the scope of their use, and analysing their performance in various environments are key to the successful adaptation of this technology in agriculture.
- Klíčová slova
- agricultural sustainability, bioinoculants, climate change mitigation, green revolution, negative impact,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The dual-affinity nitrate transceptor NITRATE TRANSPORTER1.1 (NRT1.1) has two modes of transport and signaling, governed by Thr-101 (T101) phosphorylation. NRT1.1 regulates lateral root (LR) development by modulating nitrate-dependent basipetal auxin export and nitrate-mediated signal transduction. Here, using the Arabidopsis (Arabidopsis thaliana) NRT1.1T101D phosphomimetic and NRT1.1T101A nonphosphorylatable mutants, we found that the phosphorylation state of NRT1.1 plays a key role in NRT1.1 function during LR development. Single-particle tracking revealed that phosphorylation affected NRT1.1 spatiotemporal dynamics. The phosphomimetic NRT1.1T101D form showed fast lateral mobility and membrane partitioning that facilitated auxin flux under low-nitrate conditions. By contrast, nonphosphorylatable NRT1.1T101A showed low lateral mobility and oligomerized at the plasma membrane (PM), where it induced endocytosis via the clathrin-mediated endocytosis and microdomain-mediated endocytosis pathways under high-nitrate conditions. These behaviors promoted LR development by suppressing NRT1.1-controlled auxin transport on the PM and stimulating Ca2+-ARABIDOPSIS NITRATE REGULATED1 signaling from the endosome.
- MeSH
- Arabidopsis genetika růst a vývoj metabolismus MeSH
- dusičnany metabolismus MeSH
- fosforylace MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- proteiny přenášející anionty genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- transkripční faktory metabolismus MeSH
- vápníková signalizace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ANR1 protein, Arabidopsis MeSH Prohlížeč
- dusičnany MeSH
- kyseliny indoloctové MeSH
- NRT1.1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny přenášející anionty MeSH
- rostlinné proteiny MeSH
- transkripční faktory MeSH
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
- Klíčová slova
- auxin, cellular level, cytokinin, phytohormone metabolism, phytohormone transport, subcellular level,
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fyziologie rostlin * MeSH
- homeostáza * MeSH
- intracelulární prostor metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolické sítě a dráhy MeSH
- organely metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné buňky metabolismus MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH