Nejvíce citovaný článek - PubMed ID 27268244
Evolutionary relationships within the Phytophthora cactorum species complex in Europe
Phytophthora cactorum is an important oomycetous plant pathogen with numerous host plant species, including garden strawberry (Fragaria × ananassa) and silver birch (Betula pendula). P. cactorum also hosts mycoviruses, but their phenotypic effects on the host oomycete have not been studied earlier. In the present study, we tested polyethylene glycol (PEG)-induced water stress for virus curing and created an isogenic virus-free isolate for testing viral effects in pair with the original isolate. Phytophthora cactorum bunya-like viruses 1 and 2 (PcBV1 & 2) significantly reduced hyphal growth of the P. cactorum host isolate, as well as sporangia production and size. Transcriptomic and proteomic analyses revealed an increase in the production of elicitins due to bunyavirus infection. However, the presence of bunyaviruses did not seem to alter the pathogenicity of P. cactorum. Virus transmission through anastomosis was unsuccessful in vitro.
- Klíčová slova
- Bunyaviridae, PEG 8000, Phytophthora cactorum, mycovirus, oomycetes, virus curing,
- MeSH
- bříza MeSH
- Bunyaviridae * MeSH
- Orthobunyavirus * MeSH
- Phytophthora * MeSH
- proteomika MeSH
- rostliny MeSH
- stanovení celkové genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Poplars are among the fastest-growing trees and significant resources in agriculture and forestry. However, rapid growth requires a large water consumption, and irrigation water provides a natural means for pathogen spread. That includes members of Phytophthora spp. that have proven to be a global enemy to forests. With the known adaptability to new hosts, it is only a matter of time for more aggressive Phytophthora species to become a threat to poplar forests and plantations. Here, the effects of artificial inoculation with two different representatives of aggressive species (P. cactorum and P. plurivora) were analyzed in the proteome of the Phytophthora-tolerant hybrid poplar clone T-14 [Populus tremula L. 70 × (Populus × canescens (Ait.) Sm. 23)]. Wood microcore samples were collected at the active necrosis borders to provide insight into the molecular processes underlying the observed tolerance to Phytophthora. The analysis revealed the impact of Phytophthora on poplar primary and secondary metabolism, including carbohydrate-active enzymes, amino acid biosynthesis, phenolic metabolism, and lipid metabolism, all of which were confirmed by consecutive metabolome and lipidome profiling. Modulations of enzymes indicating systemic response were confirmed by the analysis of leaf proteome, and sampling of wood microcores in distal locations revealed proteins with abundance correlating with proximity to the infection, including germin-like proteins, components of proteosynthesis, glutamate carboxypeptidase, and an enzyme that likely promotes anthocyanin stability. Finally, the identified Phytophthora-responsive proteins were compared to those previously found in trees with compromised defense against Phytophthora, namely, Quercus spp. and Castanea sativa. That provided a subset of candidate markers of Phytophthora tolerance, including certain ribosomal proteins, auxin metabolism enzymes, dioxygenases, polyphenol oxidases, trehalose-phosphate synthase, mannose-1-phosphate guanylyltransferase, and rhamnose biosynthetic enzymes. In summary, this analysis provided the first insight into the molecular mechanisms of hybrid poplar defense against Phytophthora and identified prospective targets for improving Phytophthora tolerance in trees.
- Klíčová slova
- Phytophthora cactorum, Phytophthora plurivora, Populus, biotic interaction, lipidome, metabolome, proteome,
- Publikační typ
- časopisecké články MeSH
Phytophthora cactorum is considered an important plant pathogen which is causing major damage to strawberry plants worldwide. In the current study, the ability of the active ingredients of seven different fungicides, azoxystrobin, cymoxanil, dimethomorph, fenamidone, fluopicolide, metalaxyl and propamocarb, to suppress the mycelial growth, sporangial formation and zoospore release of P. cactorum isolates, was tested. The variation in resistance against various fungicides was found among the isolates. The active ingredients are also unequally efficient against different life stages of P. cactorum, which is probably associated with their different modes of action. A significant level of resistance was recorded against metalaxyl and dimethomorph; however, these were totally inefficient against the zoospore release, while azoxystrobin did not inhibit mycelial growth. The only fungicide efficient against all three P. cactorum life stages tested was fluopicolide, although the calculated resistance factor gives evidence of the rise of resistance in the majority of isolates even against this fungicide. Significant differences were found between responses to fungicides of isolates from strawberry and from other host species. Based on the Mahalanobis distances calculated in the discriminant analysis comprising all of the assays performed, the similarities among isolates were estimated.
- Klíčová slova
- Phytophthora cactorum, fungicide resistance, mycelial growth inhibition,
- Publikační typ
- časopisecké články MeSH
The symptoms of crown rot on strawberry plants are considered typical for the pathogen Phytophthora cactorum, which causes high losses of this crop. However, an unknown number of related species of pathogens of Peronosporales cause symptoms quite similar to those caused by P. cactorum. To determine their spectrum and importance, strawberry plants were sampled from 41 farms in the Czech Republic. The cultures were isolated from the symptomatic plants using the baiting method, with subsequent cultivation on a semiselective medium. Isolates were identified to the species level using nuclear ribosomal internal transcribed spacer (ITS) barcoding after preliminary morphological determination. In total, 175 isolates of 24 species of Phytophthora, Phytopythium, Pythium, and Globisporangium were detected. The most represented was Phytophthora cactorum, with 113 (65%) isolates, which was recorded in 61% of farms, and the Pythium dissotocum complex with 20 (11%) isolates, which was recorded in 27% of farms. Other species were represented in units of percent. Large differences between farms in the species spectra were ascertained. The differences between species in cardinal growth temperatures and different management of the farms are discussed as a main reason for such a diversification. Regarding the dissimilar sensitivity of various species of Peronosporales against fungicides, the proper determination of the cause of disease is of crucial significance in plant protection.
- Klíčová slova
- Phytophthora cactorum, oomycetes, root pathogens, root rot, strawberry disease,
- Publikační typ
- časopisecké články MeSH
The genus Phytophthora comprises many economically and ecologically important plant pathogens. Hybrid species have previously been identified in at least six of the 12 phylogenetic clades. These hybrids can potentially infect a wider host range and display enhanced vigour compared to their progenitors. Phytophthora hybrids therefore pose a serious threat to agriculture as well as to natural ecosystems. Early and correct identification of hybrids is therefore essential for adequate plant protection but this is hampered by the limitations of morphological and traditional molecular methods. Identification of hybrids is also important in evolutionary studies as the positioning of hybrids in a phylogenetic tree can lead to suboptimal topologies. To improve the identification of hybrids we have combined genotyping-by-sequencing (GBS) and genome size estimation on a genus-wide collection of 614 Phytophthora isolates. Analyses based on locus- and allele counts and especially on the combination of species-specific loci and genome size estimations allowed us to confirm and characterize 27 previously described hybrid species and discover 16 new hybrid species. Our method was also valuable for species identification at an unprecedented resolution and further allowed correct naming of misidentified isolates. We used both a concatenation- and a coalescent-based phylogenomic method to construct a reliable phylogeny using the GBS data of 140 non-hybrid Phytophthora isolates. Hybrid species were subsequently connected to their progenitors in this phylogenetic tree. In this study we demonstrate the application of two validated techniques (GBS and flow cytometry) for relatively low cost but high resolution identification of hybrids and their phylogenetic relations.
- Klíčová slova
- Flow cytometry, GBS, Hybrid, Oomycete, Phylogeny, Polyploidy,
- Publikační typ
- časopisecké články MeSH
A population study of Phytophthora cactorum was performed using ddRADseq sequence variation analysis completed by the analysis of effector genes-RXLR6, RXLR7 and SCR113. The population structure was described by F-statistics, heterozygosity, nucleotide diversity, number of private alleles, number of polymorphic sites, kinship coefficient and structure analysis. The population of P. cactorum in Europe seems to be structured into host-associated groups. The isolates from woody hosts are structured into four groups described previously, while isolates from strawberry form another group. The groups are diverse in effector gene composition and the frequency of outbreeding. When populations from strawberry were analysed, both asexual reproduction and occasional outbreeding confirmed by gene flow among distinct populations were detected. Therefore, distinct P. cactorum populations differ in the level of heterozygosity. The data support the theory of the mixed-mating model for P. cactorum, comprising frequent asexual behaviour and inbreeding alternating with occasional outbreeding. Because P. cactorum is not indigenous to Europe, such variability is probably caused by multiple introductions of different lineages from the area of its original distribution, and the different histories of sexual recombination and host adaptation of particular populations.
- Klíčová slova
- Phytophthora cactorum, effector genes, mixed-mating system, population structure, reproduction,
- Publikační typ
- časopisecké články MeSH
During surveys of Phytophthora diversity in natural and semi-natural Fagaceae forests in Austria, Italy and Portugal, four new cryptic species were isolated from rhizosphere soil samples. Multigene phylogeny based on nuclear ITS, ß-tubulin and HSP90 and mitochondrial cox1 and NADH1 gene sequences demonstrated that two species, P. tyrrhenica and P. vulcanica spp. nov., belong to phylogenetic Clade 7a, while the other two species, P. castanetorum and P. tubulina spp. nov., clustered together with P. quercina forming a new clade, named here as Clade 12. All four new species are homothallic and have low optimum and maximum temperatures for growth and very slow growth rates at their respective optimum temperature. They differed from each other and from related species by a unique combination of morphological characters, cardinal temperatures, and growth rates. Pathogenicity of all Phytophthora species to the root system of their respective host species was demonstrated in soil infestation trials.
- Klíčová slova
- Clade 7, Phytophthora quercina, cryptic species, evolution, homothallic, phylogeny, species radiation,
- Publikační typ
- časopisecké články MeSH
The reactions of isolates of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to metalaxyl, mancozeb, dimethomorph, streptomycin and chloramphenicol were tested to obtain information about the variability of resistance in these pathogens. Distinct genetic groups showed significant differences in resistance to all tested substances except streptomycin. In response to streptomycin, the growth inhibition rates of distinct groups did not differ significantly. The most remarkable differences were detected in the reactions to chloramphenicol and metalaxyl. Discriminant analysis evaluating the effect of all substances confirmed the differences among the groups, which are in agreement with the differences revealed by earlier DNA analyses.
- Klíčová slova
- Chemical control, Discriminant analysis, Oomycetes, Population,
- MeSH
- antibakteriální látky farmakologie MeSH
- nemoci rostlin parazitologie MeSH
- Phytophthora účinky léků genetika růst a vývoj izolace a purifikace MeSH
- průmyslové fungicidy farmakologie MeSH
- tabák parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- průmyslové fungicidy MeSH