Nejvíce citovaný článek - PubMed ID 27460202
RGDS- and SIKVAVS-Modified Superporous Poly(2-hydroxyethyl methacrylate) Scaffolds for Tissue Engineering Applications
Magnetic maghemite (γ-Fe2O3) nanoparticles obtained by a coprecipitation of iron chlorides were dispersed in superporous poly(2-hydroxyethyl methacrylate) scaffolds containing continuous pores prepared by the polymerization of 2-hydroxyethyl methacrylate (HEMA) and ethylene dimethacrylate (EDMA) in the presence of ammonium oxalate porogen. The scaffolds were thoroughly characterized by scanning electron microscopy (SEM), vibrating sample magnetometry, FTIR spectroscopy, and mechanical testing in terms of chemical composition, magnetization, and mechanical properties. While the SEM microscopy confirmed that the hydrogels contained communicating pores with a length of ≤2 mm and thickness of ≤400 μm, the SEM/EDX microanalysis documented the presence of γ-Fe2O3 nanoparticles in the polymer matrix. The saturation magnetization of the magnetic hydrogel reached 2.04 Am2/kg, which corresponded to 3.7 wt.% of maghemite in the scaffold; the shape of the hysteresis loop and coercivity parameters suggested the superparamagnetic nature of the hydrogel. The highest toughness and compressive modulus were observed with γ-Fe2O3-loaded PHEMA hydrogels. Finally, the cell seeding experiments with the human SAOS-2 cell line showed a rather mediocre cell colonization on the PHEMA-based hydrogel scaffolds; however, the incorporation of γ-Fe2O3 nanoparticles into the hydrogel improved the cell adhesion significantly. This could make this composite a promising material for bone tissue engineering.
- Klíčová slova
- SAOS-2 cells, magnetic, poly(2-hydroxyethyl methacrylate), scaffold, superporous,
- Publikační typ
- časopisecké články MeSH
Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.
- Klíčová slova
- 3D scaffold, B cell survival, RGDS, chronic lymphocytic leukemia, poly(2-hydroxyethyl methacrylate),
- MeSH
- buněčné kultury metody MeSH
- chronická lymfatická leukemie * MeSH
- hydrogely chemie MeSH
- lidé MeSH
- mezenchymální kmenové buňky MeSH
- nádorové buněčné linie MeSH
- oligopeptidy MeSH
- poréznost MeSH
- sukcinimidy chemie MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arginyl-glycyl-aspartyl-serine MeSH Prohlížeč
- hydrogely MeSH
- N-(gamma-maleimidobutyryloxy)succinimide MeSH Prohlížeč
- oligopeptidy MeSH
- sukcinimidy MeSH
Spinal cord injury (SCI) is a serious trauma, which often results in a permanent loss of motor and sensory functions, pain and spasticity. Despite extensive research, there is currently no available therapy that would restore the lost functions after SCI in human patients. Advanced treatments use regenerative medicine or its combination with various interdisciplinary approaches such as tissue engineering or biophysical methods. This review summarizes and critically discusses the research from specific interdisciplinary fields in SCI treatment such as the development of biomaterials as scaffolds for tissue repair, and using a magnetic field for targeted cell delivery. We compare the treatment effects of synthetic non-degradable methacrylate-based hydrogels and biodegradable biological scaffolds based on extracellular matrix. The systems using magnetic fields for magnetically guided delivery of stem cells loaded with magnetic nanoparticles into the lesion site are then suggested and discussed.
- Klíčová slova
- Biomaterials, Cell delivery, Hydrogel, Magnetic field, Spinal cord injury,
- MeSH
- biokompatibilní materiály farmakologie terapeutické užití MeSH
- hydrogely terapeutické užití MeSH
- lidé MeSH
- magnetoterapie metody trendy MeSH
- poranění míchy patofyziologie terapie MeSH
- regenerace nervu účinky léků fyziologie MeSH
- transplantace kmenových buněk metody trendy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- hydrogely MeSH