Nejvíce citovaný článek - PubMed ID 27862723
Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions
Current global changes are reshaping ecological communities and modifying environmental conditions. We need to recognize the combined impact of these biotic and abiotic factors on species interactions, community dynamics and ecosystem functioning. Specifically, the strength of predator-prey interactions often depends on the presence of other natural enemies: it weakens with competition and interference or strengthens with facilitation. Such effects of multiple predators on prey are likely to be affected by changes in the abiotic environment, altering top-down control, a key structuring force in natural and agricultural ecosystems. Here, we investigated how warming alters the effects of multiple predators on prey suppression using a dynamic model coupled with empirical laboratory experiments with Drosophila-parasitoid communities. While multiple parasitoids enhanced top-down control under warming, parasitoid performance generally declined when another parasitoid was present owing to competitive interactions. This could reduce top-down control over multiple generations. Our study highlights the importance of accounting for interactive effects between abiotic and biotic factors to better predict community dynamics in a rapidly changing world and thus better preserve ecosystem functioning and services such as biological control.
Global warming is expected to have direct effects on species through their sensitivity to temperature, and also via their biotic interactions, with cascading indirect effects on species, communities, and entire ecosystems. To predict the community-level consequences of global climate change we need to understand the relative roles of both the direct and indirect effects of warming. We used a laboratory experiment to investigate how warming affects a tropical community of three species of Drosophila hosts interacting with two species of parasitoids over a single generation. Our experimental design allowed us to distinguish between the direct effects of temperature on host species performance, and indirect effects through altered biotic interactions (competition among hosts and parasitism by parasitoid wasps). Although experimental warming significantly decreased parasitism for all host-parasitoid pairs, the effects of parasitism and competition on host abundances and host frequencies did not vary across temperatures. Instead, effects on host relative abundances were species-specific, with one host species dominating the community at warmer temperatures, irrespective of parasitism and competition treatments. Our results show that temperature shaped a Drosophila host community directly through differences in species' thermal performance, and not via its influences on biotic interactions.
- MeSH
- Drosophila metabolismus parazitologie MeSH
- druhová specificita MeSH
- ekosystém MeSH
- globální oteplování MeSH
- interakce hostitele a parazita fyziologie MeSH
- klimatické změny MeSH
- symbióza MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Non-independent interactions among predators can have important consequences for the structure and dynamics of ecological communities by enhancing or reducing prey mortality rate through, e.g., predator facilitation or interference. The multiplicative risk model, traditionally used to detect these emergent multiple predator effects (MPEs), is biased because it assumes linear functional response (FR) and no prey depletion. To rectify these biases, two approaches based on FR modelling have recently been proposed: the direct FR approach and the population-dynamic approach. Here we compare the strengths, limitations and predictions of the three approaches using simulated data sets. We found that the predictions of the direct FR and the multiplicative risk models are very similar and underestimate predation rates when prey density is high or prey depletion is substantial. As a consequence, these two approaches often fail in detecting risk reduction. Finally, parameters estimated with the direct FR approach lack mechanistic interpretation, which limits the understanding of the mechanisms driving multiple predator interactions and potential extension of this approach to more complex food webs. We thus strongly recommend using the population-dynamic approach because it is robust, precise, and provides a scalable mechanistic framework to detect and quantify MPEs.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nonconsumptive predator-driven mortality (NCM), defined as prey mortality due to predation that does not result in prey consumption, is an underestimated component of predator-prey interactions with possible implications for population dynamics and ecosystem functioning. However, the biotic and abiotic factors influencing this mortality component remain largely unexplored, leaving a gap in our understanding of the impacts of environmental change on ecological communities. We investigated the effects of temperature, prey density, and predator diversity and density on NCM in an aquatic food web module composed of dragonfly larvae (Aeshna cyanea) and marbled crayfish (Procambarus fallax f. virginalis) preying on common carp (Cyprinus carpio) fry. We found that NCM increased with prey density and depended on the functional diversity and density of the predator community. Warming significantly reduced NCM only in the dragonfly larvae but the magnitude depended on dragonfly larvae density. Our results indicate that energy transfer across trophic levels is more efficient due to lower NCM in functionally diverse predator communities, at lower resource densities and at higher temperatures. This suggests that environmental changes such as climate warming and reduced resource availability could increase the efficiency of energy transfer in food webs only if functionally diverse predator communities are conserved.
- MeSH
- ekosystém * MeSH
- kapři MeSH
- populační dynamika MeSH
- potravní řetězec * MeSH
- predátorské chování * MeSH
- severní raci MeSH
- sladká voda MeSH
- teplota * MeSH
- vážky MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH