Nejvíce citovaný článek - PubMed ID 28450732
Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism
The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants. This study presents an overview of a potential research platform where the technique can be applied. The results presented can aid in providing invaluable information for developing strategies to mitigate abiotic stress in crops by improving plant breeding programs with a focus on enhancing tolerance. This study evaluates the applicability of charged couple device (CCD) imaging in evaluating plant stress and degree of damage and to discuss the advantages and limitations of the claimed non-invasive label-free tool.
- Klíčová slova
- Antioxidants, Reactive oxygen species, Stress imaging, Two-dimensional photon emission imaging, Wounding,
- Publikační typ
- časopisecké články MeSH
It is well established that every living organism spontaneously emits photons referred to as ultra-weak photon emission (synonym biophotons or low-level chemiluminescence) which inherently embodies information about the wellbeing of the source. In recent years, efforts have been made to use this feature as a non-invasive diagnostic tool related to the detection of food quality, agriculture and biomedicine. The current study deals with stress resulting from wounding (mechanical injury) on Arabidopsis thaliana and how it modifies the spontaneous ultra-weak photon emission. The ultra-weak photon emission from control (non-wounded) and stressed (wounded) plants was monitored using different modes of ultra-weak photon emission measurement sensors like charge-coupled device (CCD) cameras and photomultiplier tubes (PMT) and the collected data were analyzed to determine the level of stress generated, photon emission patterns, and underlying biochemical process. It is generally considered that electronically excited species formed during the oxidative metabolic processes are responsible for the ultra-weak photon emission. In the current study, a high-performance cryogenic full-frame CCD camera was employed for two-dimensional in-vivo imaging of ultra-weak photon emission (up to several counts/s) and the spectral analysis was done by using spectral system connected to a PMT. The results show that Arabidopsis subjected to mechanical injury enhances the photon emission and also leads to changes in the spectral pattern of ultra-weak photon emission. Thus, ultra-weak photon emission can be used as a tool for oxidative stress imaging and can pave its way into numerous plant application research.
- Klíčová slova
- Arabidopsis, mechanical injury, oxidative radical reaction, reactive oxygen species, spectral properties, ultra-weak photon emission, wounding,
- Publikační typ
- časopisecké články MeSH
Biological systems manifest continuous weak autoluminescence, which is present even in the absence of external stimuli. Since this autoluminescence arises from internal metabolic and physiological processes, several works suggested that it could carry information in the time series of the detected photon counts. However, there is little experimental work which would show any difference of this signal from random Poisson noise and some works were prone to artifacts due to lacking or improper reference signals. Here we apply rigorous statistical methods and advanced reference signals to test the hypothesis whether time series of autoluminescence from germinating mung beans display any intrinsic correlations. Utilizing the fractional Brownian bridge that employs short samples of time series in the method kernel, we suggest that the detected autoluminescence signal from mung beans is not totally random, but it seems to involve a process with a negative memory. Our results contribute to the development of the rigorous methodology of signal analysis of photonic biosignals.
- MeSH
- klíčení fyziologie MeSH
- luminiscence * MeSH
- vigna růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
- Klíčová slova
- chromophores, electronically excited species, hydrogen peroxide, hydroxyl radical, oxidative radical reactions, reactive oxygen species, singlet oxygen, superoxide anion radical,
- MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- přenos energie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyslík MeSH
- reaktivní formy kyslíku MeSH