Most cited article - PubMed ID 28651174
Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins
This year we celebrate seventy years since the establishment of the Institute of Biophysics of the Czechoslovak Academy of Sciences (IBP) (founded on January 1, 1955). If we look into the biography of Professor Emil Paleček (born on October 3, 1930), one of the most world-recognized personalities associated with the Institute and one of the most cited Czech scientists, known as the founder of nucleic acids electrochemistry, we are drawn to the same year, i.e. 1955, as the year in which Emil Paleček finished his studies in biochemistry and joined the IBP, where he worked with admirable vitality, enthusiasm and dedication until his death (October 30, 2018). In the context of celebration of founding of the Institute, we would like to commemorate in this article a personality who significantly influenced the history of the Institute alongside the important discoveries and research directions that defined his extremely successful career. We prefer this form, which is a sort of a mini-review of the most important results of the laboratory obtained under EP's leadership over 63 years, presented in mutual context and natural relations. For his life's work, Professor Paleček received many prestigious awards, with the Czech Head Award in 2014 and the Neuron Foundation Award in 2017 being the most distinguished.
- Keywords
- Electrochemistry, Glycans, Modification, Nucleic acids, Proteins, Structure,
- Publication type
- Journal Article MeSH
- Review MeSH
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.
- Keywords
- Electrode, Microdevice, Peptide, Protein, Sensor,
- MeSH
- Electrochemical Techniques * methods MeSH
- Electrochemistry MeSH
- Oxidation-Reduction MeSH
- Proteins * MeSH
- Electron Transport MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Proteins * MeSH