Most cited article - PubMed ID 28678601
Adhesion structures in leukemia cells and their regulation by Src family kinases
P21-activated kinases (PAK) regulate processes associated with cytoskeleton dynamics. PAK expression in leukemia cells was measured on protein and mRNA levels. In functional assays, we analyzed the effect of PAK inhibitors IPA-3 and FRAX597 on cell adhesivity and viability. PAK2 was dominant in cell lines, whereas primary cells also expressed comparable amount of PAK1 transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 levels correlated with surface density of integrins β1 and αVβ3. PAK1-full, but not PAK2, was present in membrane protrusions. IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death.
- Keywords
- AML, ECIS, IRM, PAK, acute myeloid leukemia, cell adhesion,
- MeSH
- Cell Adhesion MeSH
- Cell Line MeSH
- Fibronectins genetics MeSH
- Leukemia * genetics MeSH
- Humans MeSH
- p21-Activated Kinases * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fibronectins MeSH
- p21-Activated Kinases * MeSH
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
- MeSH
- Apoptosis drug effects MeSH
- HEK293 Cells MeSH
- Indoles pharmacology MeSH
- Nuclear Proteins genetics metabolism MeSH
- Leukemia drug therapy genetics metabolism MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Nucleophosmin MeSH
- Antineoplastic Agents pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Indoles MeSH
- Nuclear Proteins MeSH
- NPM1 protein, human MeSH Browser
- NSC 348884 MeSH Browser
- Nucleophosmin MeSH
- Antineoplastic Agents MeSH
P21-activated kinases (PAK) are key effectors of the small GTPases Rac1 and Cdc42, as well as of Src family kinases. In particular, PAK1 has several well-documented roles, both kinase-dependent and kinase-independent, in cancer-related processes, such as cell proliferation, adhesion, and migration. However, PAK1 properties and functions have not been attributed to individual PAK1 isoforms: besides the full-length kinase (PAK1-full), a splicing variant lacking the exon 15 (PAK1Δ15) is annotated in protein databases. In addition, it is not clear if PAK1 and PAK2 are functionally overlapping. Using fluorescently tagged forms of human PAK1-full, PAK1Δ15, and PAK2, we analyzed their intracellular localization and mutual interactions. Effects of PAK inhibition (IPA-3, FRAX597) or depletion (siRNA) on cell-surface adhesion were monitored by real-time microimpedance measurement. Both PAK1Δ15 and PAK2, but not PAK1-full, were enriched in focal adhesions, indicating that the C-terminus might be important for PAK intracellular localization. Using coimmunoprecipitation, we documented direct interactions among the studied PAK group I members: PAK1 and PAK2 form homodimers, but all possible heterocomplexes were also detected. Interaction of PAK1Δ15 or PAK2 with PAK1-full was associated with extensive PAK1Δ15/PAK2 cleavage. The impedance measurements indicate, that PAK2 depletion slows down cell attachment to a surface, and that PAK1-full is involved in cell spreading. Altogether, our data suggest a complex interplay among different PAK group I members, which have non-redundant functions.
- MeSH
- Cell Adhesion genetics physiology MeSH
- Cell Line MeSH
- Exons genetics MeSH
- HEK293 Cells MeSH
- HeLa Cells MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- p21-Activated Kinases genetics metabolism MeSH
- Cell Movement genetics physiology MeSH
- Cell Proliferation genetics physiology MeSH
- Signal Transduction genetics physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- p21-Activated Kinases MeSH
- PAK1 protein, human MeSH Browser
- PAK2 protein, human MeSH Browser