BACKGROUND: Leukemia is driven by complex interactions within the inherently hypoxic bone marrow microenvironment, impacting both disease progression and therapeutic resistance. Co-cultivation of leukemic cells with feeder cells has emerged as a valuable tool to mimic the bone marrow niche. This study explores the interplay between human commercial SD-1 and patient-derived UPF26K leukemic cell lines with feeders - human fibroblasts (NHDF) and mesenchymal stem cells (hMSCs) under normoxic and hypoxic conditions. RESULTS: Co-cultivation with feeders significantly enhances proliferation and glycolytic activity in the SD-1 cells, improving their viability, while this interaction inhibits the growth and glucose metabolism of the feeders, particularly NHDF. In contrast, UPF26K cells show reduced proliferation when co-cultivated with the feeders while this interaction stimulates NHDF and hMSCs proliferation and glycolysis but reduce their mitochondrial metabolism with hypoxia amplifying these effects. CONCLUSIONS: Cells that switch to glycolysis during co-cultivation, particularly under hypoxia, benefit most from these low oxygen conditions. Due to this leukemic cells' response heterogeneity, targeting microenvironmental interactions and oxygen levels is crucial for personalized leukemia therapy. Advancing co-cultivation models, particularly through innovations like spheroids, can further enhance in vitro studies of primary leukemic cells and support the testing of novel therapies.
- Klíčová slova
- Co-cultivation, Feeders, Hypoxia, Leukemic cells, Tumor microenvironment,
- MeSH
- fibroblasty * metabolismus MeSH
- glykolýza MeSH
- hypoxie buňky MeSH
- kokultivační techniky metody MeSH
- leukemie * patologie metabolismus MeSH
- lidé MeSH
- mezenchymální kmenové buňky * metabolismus MeSH
- mitochondrie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The mechanistic target of rapamycin (mTOR) is a crucial regulator of cell metabolic activity. It forms part of several distinct protein complexes, particularly mTORC1 and mTORC2. The lack of specific inhibitors still hampers the attribution of mTOR functions to these complexes. JR-AB2-011 has been reported as a specific mTORC2 inhibitor preventing mTOR binding to RICTOR, a unique component of mTORC2. We aimed to describe the effects of JR-AB2-011 in leukemia/lymphoma cells, where the mTOR pathway is often aberrantly activated. METHODS: The impact of JR-AB2-011 on leukemia/lymphoma cell metabolism was analyzed using the Seahorse platform. AKT phosphorylation at Ser473 was used as a marker of mTORC2 activity. mTOR binding to RICTOR was assessed by co-immunoprecipitation. RICTOR-null cells were derived from the Karpas-299 cell line using CRISPR/Cas9 gene editing. RESULTS: In leukemia/lymphoma cell lines, JR-AB2-011 induced a rapid drop in the cell respiration rate, which was variably compensated by an increased glycolytic rate. In contrast, an increase in the respiration rate due to JR-AB2-011 treatment was observed in primary leukemia cells. Unexpectedly, JR-AB2-011 did not affect AKT Ser473 phosphorylation. In addition, mTOR did not dissociate from RICTOR in cells treated with JR-AB2-011 under the experimental conditions used in this study. The effect of JR-AB2-011 on cell respiration was retained in RICTOR-null cells. CONCLUSION: JR-AB2-011 affects leukemia/lymphoma cell metabolism via a mechanism independent of mTORC2.
- Klíčová slova
- AML, Acute myeloid leukemia, Mitochondrial respiration, OCR,
- MeSH
- fosforylace účinky léků MeSH
- leukemie * farmakoterapie metabolismus MeSH
- lidé MeSH
- mTOR inhibitory farmakologie MeSH
- mTORC2 * metabolismus MeSH
- nádorové buněčné linie MeSH
- protein RICTOR * metabolismus MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mTOR inhibitory MeSH
- mTORC2 * MeSH
- protein RICTOR * MeSH
- protoonkogenní proteiny c-akt MeSH
- RICTOR protein, human MeSH Prohlížeč
In the last decade, geopolitical instability across the globe has increased the risk of a large-scale radiological event, when radiation biomarkers would be needed for an effective triage of an irradiated population. Ionizing radiation elicits a complex response in the proteome, genome, and metabolome and hence can be leveraged as rapid and sensitive indicators of irradiation-induced damage. We analyzed the plasma of total-body irradiated (TBI) leukemia patients (n = 24) and nonhuman primates (NHPs; n = 10) before and 24 h after irradiation, and we performed a global metabolomic study aiming to provide plasma metabolites as candidate radiation biomarkers for biological dosimetry. Peripheral blood samples were collected according to the appropriate ethical approvals, and metabolites were extracted and analyzed by liquid chromatography mass spectrometry. We identified an array of metabolites significantly altered by irradiation, including bilirubin, cholesterol, and 18-hydroxycorticosterone, which were detected in leukemia patients and NHPs. Pathway analysis showed overlapping perturbations in steroidogenesis, porphyrin metabolism, and steroid hormone biosynthesis and metabolism. Additionally, we observed dysregulation in bile acid biosynthesis and tyrosine metabolism in the TBI patient cohort. This investigation is, to our best knowledge, among the first to provide valuable insights into a comparison between human and NHP irradiation models. The findings from this study could be leveraged for translational biological dosimetry.
- Klíčová slova
- biomarkers, human, metabolomics, nonhuman primate, plasma, total-body irradiation,
- MeSH
- biologické markery krev MeSH
- celotělové ozáření * MeSH
- dospělí MeSH
- ionizující záření MeSH
- leukemie krev metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- Macaca mulatta MeSH
- metabolom * MeSH
- metabolomika metody MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
N-acetylcysteine (NAC), often used as an antioxidant-scavenging reactive oxygen species (ROS) in vitro, was recently shown to increase the cytotoxicity of other compounds through ROS-dependent and ROS-independent mechanisms. In this study, NAC itself was found to induce extensive ROS production in human leukemia HL-60 and U937 cells. The cytotoxicity depends on ROS-modulating enzyme expression. In HL-60 cells, NAC activated NOX2 to produce superoxide (O2•-). Its subsequent conversion into H2O2 by superoxide dismutase 1 and 3 (SOD1, SOD3) and production of ClO- from H2O2 by myeloperoxidase (MPO) was necessary for cell death induction. While the addition of extracellular SOD potentiated NAC-induced cell death, extracellular catalase (CAT) prevented cell death in HL-60 cells. The MPO inhibitor partially reduced the number of dying HL-60 cells. In U937 cells, the weak cytotoxicity of NAC is probably caused by lower expression of NOX2, SOD1, SOD3, and by the absence of MOP expression. However, even here, the addition of extracellular SOD induced cell death in U937 cells, and this effect could be reversed by extracellular CAT. NAC-induced cell death exhibited predominantly apoptotic features in both cell lines. Conclusions: NAC itself can induce extensive production of O2•- in HL-60 and U937 cell lines. The fate of the cells then depends on the expression of enzymes that control the formation and conversion of ROS: NOX, SOD, and MPO. The mode of cell death in response to NAC treatment bears apoptotic and apoptotic-like features in both cell lines.
- Klíčová slova
- HL-60 cells, MPO, N-acetylcysteine, NOX, SOD, U937 cells, oxidative stress,
- MeSH
- acetylcystein farmakologie MeSH
- HL-60 buňky MeSH
- katalasa genetika MeSH
- leukemie farmakoterapie genetika metabolismus MeSH
- lidé MeSH
- NADPH-oxidasa 2 genetika MeSH
- oxidační stres účinky léků MeSH
- peroxidasa genetika MeSH
- proliferace buněk účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese u nádorů účinky léků MeSH
- stanovení celkové genové exprese MeSH
- superoxiddismutasa genetika MeSH
- U937 buňky MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcystein MeSH
- CYBB protein, human MeSH Prohlížeč
- katalasa MeSH
- MPO protein, human MeSH Prohlížeč
- NADPH-oxidasa 2 MeSH
- peroxidasa MeSH
- reaktivní formy kyslíku MeSH
- superoxiddismutasa MeSH
Incorrectly expressed or mutated proteins associated with hematologic malignancies have been generally targeted by chemotherapy using small-molecule inhibitors or monoclonal antibodies. But the majority of these intracellular proteins are without active sites and antigens. PROTACs, proteolysis targeting chimeras, are bifunctional molecules designed to polyubiquitinate and degrade specific pathological proteins of interest (POIs) by hijacking the activity of E3-ubiquitin ligases for POI polyubiquitination and subsequent degradation by the proteasome. This strategy utilizes the ubiquitin-proteasome system for the degradation of specific proteins in the cell. In many cases, including hematologic malignancies, inducing protein degradation as a therapeutic strategy offers therapeutic benefits over classical enzyme inhibition connected with resistance to inhibitors. Limitations of small-molecule inhibitors are shown. PROTACs can polyubiquitinate and mark for degradation of "undruggable"proteins, e.g. transcription factor STAT3 and scaffold proteins. Today, this technology is used in preclinical studies in various hematologic malignancies, mainly for targeting drug-resistant bromodomain and extraterminal proteins and Bruton tyrosine kinase. Several mechanisms limiting selectivity and safety of PROTAC molecules function are also discussed.
- Klíčová slova
- E3 ubiquitin ligase, Proteolysis targeting chimera, cellular inhibitor of apoptosis 1, cereblon, leukemia, lymphoma., ubiquitin-proteasome system, von hippel lindau,
- MeSH
- hematologické nádory farmakoterapie metabolismus MeSH
- leukemie farmakoterapie metabolismus MeSH
- lidé MeSH
- lymfom farmakoterapie metabolismus MeSH
- objevování léků * MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteolýza účinky léků MeSH
- protinádorové látky chemie farmakologie MeSH
- ubikvitinace účinky léků MeSH
- ubikvitinligasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- proteasomový endopeptidasový komplex MeSH
- protinádorové látky MeSH
- ubikvitinligasy MeSH
HDGF-related protein 2 (HRP-2) is a member of the Hepatoma-Derived Growth Factor-related protein family that harbors the structured PWWP and Integrase Binding Domain, known to associate with methylated histone tails or cellular and viral proteins, respectively. Interestingly, HRP-2 is a paralog of Lens Epithelium Derived Growth Factor p75 (LEDGF/p75), which is essential for MLL-rearranged (MLL-r) leukemia but dispensable for hematopoiesis. Sequel to these findings, we investigated the role of HRP-2 in hematopoiesis and MLL-r leukemia. Protein interactions were investigated by co-immunoprecipitation and validated using recombinant proteins in NMR. A systemic knockout mouse model was used to study normal hematopoiesis and MLL-ENL transformation upon the different HRP-2 genotypes. The role of HRP-2 in MLL-r and other leukemic, human cell lines was evaluated by lentiviral-mediated miRNA targeting HRP-2. We demonstrate that MLL and HRP-2 interact through a conserved interface, although this interaction proved less dependent on menin than the MLL-LEDGF/p75 interaction. The systemic HRP-2 knockout mice only revealed an increase in neutrophils in the peripheral blood, whereas the depletion of HRP-2 in leukemic cell lines and transformed primary murine cells resulted in reduced colony formation independently of MLL-rearrangements. In contrast, primary murine HRP-2 knockout cells were efficiently transformed by the MLL-ENL fusion, indicating that HRP-2, unlike LEDGF/p75, is dispensable for the transformation of MLL-ENL leukemogenesis but important for leukemic cell survival.
- Klíčová slova
- animal model, cell culture, cell proliferation, hematopoietic stem cell, leukemia, molecular cell biology, nuclear magnetic resonance (NMR), protein complex, protein-protein interaction,
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- HEK293 buňky MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- karcinogeneze genetika metabolismus patologie MeSH
- leukemie genetika metabolismus patologie MeSH
- lidé MeSH
- myši knockoutované MeSH
- myši MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- protoonkogenní protein MLL genetika metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- Hdgfl2 protein, mouse MeSH Prohlížeč
- histonlysin-N-methyltransferasa MeSH
- KMT2A protein, human MeSH Prohlížeč
- Kmt2a protein, mouse MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- protoonkogenní protein MLL MeSH
- PSIP1 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
Nucleophosmin (NPM) mutations causing its export from the nucleoli to the cytoplasm are frequent in acute myeloid leukemia (AML). Due to heterooligomerization of wild type NPM with the AML-related mutant, the wild-type becomes misplaced from the nucleoli and its functions are significantly altered. Dissociation of NPM heterooligomers may thus restore the proper localization and function of wild-type NPM. NSC348884 is supposed to act as a potent inhibitor of NPM oligomerization. The effect of NSC348884 on the NPM oligomerization was thoroughly examined by fluorescence lifetime imaging with utilization of FRET and by a set of immunoprecipitation and electrophoretic methods. Leukemia-derived cell lines and primary AML cells as well as cells transfected with fluorescently labeled NPM forms were investigated. Our results clearly demonstrate that NSC348884 does not inhibit formation of NPM oligomers neither in vivo nor in vitro. Instead, we document that NSC348884 cytotoxicity is rather associated with modified cell adhesion signaling. The cytotoxic mechanism of NSC348884 has therefore to be reconsidered.
- MeSH
- apoptóza účinky léků MeSH
- HEK293 buňky MeSH
- indoly farmakologie MeSH
- jaderné proteiny genetika metabolismus MeSH
- leukemie farmakoterapie genetika metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nukleofosmin MeSH
- protinádorové látky farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- indoly MeSH
- jaderné proteiny MeSH
- NPM1 protein, human MeSH Prohlížeč
- NSC 348884 MeSH Prohlížeč
- nukleofosmin MeSH
- protinádorové látky MeSH
Progress in cancer therapy changed the outcome of many patients and moved therapy from chemotherapy agents to targeted drugs. Targeted drugs already changed the clinical practice in treatment of leukemias, such as imatinib (BCR/ABL inhibitor) in chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL), ibrutinib (Bruton's tyrosine kinase inhibitor) in chronic lymphocytic leukemia (CLL), venetoclax (BCL2 inhibitor) in CLL and acute myeloid leukemia (AML) or midostaurin (FLT3 inhibitor) in AML. In this review, we focused on DNA damage response (DDR) inhibition, specifically on inhibition of ATR-CHK1 pathway. Cancer cells harbor often defects in different DDR pathways, which render them vulnerable to DDR inhibition. Some DDR inhibitors showed interesting single-agent activity even in the absence of cytotoxic drug especially in cancers with underlying defects in DDR or DNA replication. Almost no mutations were found in ATR and CHEK1 genes in leukemia patients. Together with the fact that ATR-CHK1 pathway is essential for cell development and survival of leukemia cells, it represents a promising therapeutic target for treatment of leukemia. ATR-CHK1 inhibition showed excellent results in preclinical testing in acute and chronic leukemias. However, results in clinical trials are so far insufficient. Therefore, the ongoing and future clinical trials will decide on the success of ATR/CHK1 inhibitors in clinical practice of leukemia treatment.
- Klíčová slova
- ATR, CHK1, DDR, Inhibition, Leukemia,
- MeSH
- akutní nemoc MeSH
- ATM protein antagonisté a inhibitory metabolismus MeSH
- checkpoint kinasa 1 antagonisté a inhibitory metabolismus MeSH
- chronická nemoc MeSH
- cílená molekulární terapie MeSH
- leukemie farmakoterapie genetika metabolismus patologie MeSH
- lidé MeSH
- poškození DNA MeSH
- randomizované kontrolované studie jako téma MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ATM protein MeSH
- checkpoint kinasa 1 MeSH
Bersavine is the new bisbenzylisoquinoline alkaloid isolated from the Berberis vulgaris L.(Berberidaceae) plant. The results of cytotoxicity screening 48 h post-treatment showed thatbersavine considerably inhibits the proliferation and viability of leukemic (Jurkat, MOLT-4), colon(HT-29), cervix (HeLa) and breast (MCF-7) cancer cells with IC50 values ranging from 8.1 to 11 μM.The viability and proliferation of leukemic Jurkat and MOLT-4 cells were decreased after bersavinetreatment in a time- and dose-dependent manner. Bersavine manifested concentration-dependentantiproliferative activity in human lung, breast, ovarian and hepatocellular carcinoma cell linesusing a xCELLigence assay. Significantly higher percentages of MOLT-4 cells exposed to bersavineat 20 μM for 24 h were arrested in the G1 phase of the cell cycle using the flow cytometry method.The higher percentage of apoptotic cells was measured after 24 h of bersavine treatment. Theupregulation of p53 phosphorylated on Ser392 was detected during the progression of MOLT-4 cellapoptosis. Mechanistically, bersavine-induced apoptosis is an effect of increased activity ofcaspases, while reduced proliferation seems dependent on increased Chk1 Ser345 phosphorylationand decreased Rb Ser807/811 phosphorylation in human leukemic cells.
- Klíčová slova
- antiproliferative activity, apoptosis, bersavine, cell cycle, cytotoxicity,
- MeSH
- alkaloidy * chemie izolace a purifikace farmakologie MeSH
- apoptóza účinky léků MeSH
- Berberis chemie MeSH
- buňky Hep G2 MeSH
- buňky HT-29 MeSH
- cytotoxiny * chemie izolace a purifikace farmakologie MeSH
- fytogenní protinádorové látky * chemie izolace a purifikace farmakologie MeSH
- G1 fáze účinky léků MeSH
- HeLa buňky MeSH
- Jurkat buňky MeSH
- leukemie farmakoterapie metabolismus patologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- screeningové testy protinádorových léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkaloidy * MeSH
- cytotoxiny * MeSH
- fytogenní protinádorové látky * MeSH
The cancer metabolic program alters bioenergetic processes to meet the higher demands of tumor cells for biomass production, nucleotide synthesis, and NADPH-balancing redox homeostasis. It is widely accepted that cancer cells mostly utilize glycolysis, as opposed to normal cells, in which oxidative phosphorylation is the most employed bioenergetic process. Still, studies examining cancer metabolism had been overlooked for many decades, and it was only recently discovered that metabolic alterations affect both the oncogenic potential and therapeutic response. Since most of the published works concern solid tumors, in this comprehensive review, we aim to summarize knowledge about the metabolism of leukemia cells. Leukemia is a malignant disease that ranks first and fifth in cancer-related deaths in children and adults, respectively. Current treatment has reached its limits due to toxicity, and there has been a need for new therapeutic approaches. One of the possible scenarios is improved use of established drugs and another is to introduce new druggable targets. Herein, we aim to describe the complexity of leukemia metabolism and highlight cellular processes that could be targeted therapeutically and enhance the effectiveness of current treatments.
- Klíčová slova
- Asparagine, Bioenergetics, Cancer metabolism, Glutamine, Glycolysis, IDH1/2, Leukemia, Lipid metabolism, Metabolic targets, Oxidative phosphorylation, Resistance, Targeted therapy,
- MeSH
- leukemie metabolismus terapie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH