Nejvíce citovaný článek - PubMed ID 28922413
Exploitation of stable nanostructures based on the mouse polyomavirus for development of a recombinant vaccine against porcine circovirus 2
Ultraviolet irradiation is an effective method of virus and bacteria inactivation. The dose of UV-C light necessary for baculovirus inactivation by measurement of fluorescent GFP protein produced by baculovirus expression system after the irradiation of baculovirus culture in doses ranging from 3.5 to 42 J/m2 was determined. At a dose of 36.8 J/m2, only 0.5% of GFP-expressing cells were detected by flow cytometry and confocal microscopy. The stability of purified VP1-PCV2bCap protein produced by baculovirus expression system was analyzed after the irradiation at doses ranging from 3.5 to 19.3 J/m2. Up to the dose of 11 J/m2, no significant effect of UV-C light on the stability of VP1-PCV2bCap was detected. We observed a dose-dependent increase in VP1-PCV2bCap-specific immune response in BALB/c mice immunized by recombinant protein sterilized by irradiation in dose 11 J/m2 with no significant difference between vaccines sterilized by UV-C light and filtration. A substantial difference in the production of VP1-PCV2bCap specific IgG was observed in piglets immunized with VP1-PCV2bCap sterilized by UV-C in comparison with protein sterilized by filtration in combination with the inactivation of baculovirus by binary ethylenimine. UV-C irradiation represents an effective method for vaccine sterilization, where commonly used methods of sterilization are not possible.
- MeSH
- myši MeSH
- prasata MeSH
- rekombinantní proteiny genetika MeSH
- sterilizace MeSH
- syntetické vakcíny * MeSH
- ultrafialové záření MeSH
- viry * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rekombinantní proteiny MeSH
- syntetické vakcíny * MeSH
Porcine circovirus causes the post-weaning multi-systemic wasting syndrome. Despite the existence of commercial vaccines, the development of more effective and cheaper vaccines is expected. The usage of chimeric antigens allows serological differentiation between naturally infected and vaccinated animals. In this work, recombinant pentameric vaccination protein particles spontaneously assembled from identical subunits-chimeric fusion proteins derived from circovirus capsid antigen Cap and a multimerizing subunit of mouse polyomavirus capsid protein VP1 were purified and characterized using asymmetric flow field-flow fractionation (AF4) coupled with UV and MALS/DLS (multi-angle light scattering/dynamic light scattering) detectors. Various elution profiles were tested, including constant cross-flow and decreasing cross-flow (linearly and exponentially). The optimal sample retention, separation efficiency, and resolution were assessed by the comparison of the hydrodynamic radius (Rh) measured by online DLS with the Rh values calculated from the simplified retention equation according to the AF4 theory. The results show that the use of the combined elution profiles (exponential and constant cross-flow rates) reduces the time of the separation, prevents undesirable sample-membrane interaction, and yields better resolution. Besides, the results show no self-associations of the individual pentameric particles into larger clusters and no sample degradation during the AF4 separation. The Rg/Rh ratios for different fractions are in good correlation with morphological analyses performed by transmission electron microscopy (TEM). Additionally to the online analysis, the individual fractions were subjected to offline analysis, including batch DLS, TEM, and SDS-PAGE, followed by Western blot.
- Klíčová slova
- Asymmetric flow field-flow fractionation (AF4), Circovirus, Recombinant antigen,
- MeSH
- buněčné linie MeSH
- Circovirus chemie MeSH
- frakcionace tokem v poli přístrojové vybavení metody MeSH
- multimerizace proteinu MeSH
- myši MeSH
- rekombinantní fúzní proteiny analýza izolace a purifikace MeSH
- Theilovirus chemie MeSH
- virové proteiny analýza izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- rekombinantní fúzní proteiny MeSH
- virové proteiny MeSH