Nejvíce citovaný článek - PubMed ID 28938006
Association between circulating miRNAs and spinal involvement in patients with axial spondyloarthritis
Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that affects the spine and sacroiliac joints. Early detection of axSpA is crucial to slow disease progression and maintain remission or low disease activity. However, current biomarkers are insufficient for diagnosing axSpA or distinguishing between its radiographic (r-axSpA) and non-radiographic (nr-axSpA) subsets. To address this, we conducted a study using miRNA profiling with massive parallel sequencing (MPS) and SmartChip qRT-PCR validation. The goal was to identify differentially expressed miRNAs in axSpA patients, specifically those subdiagnosed with nr-axSpA or r-axSpA. Disease activity was measured using C-reactive protein (CRP) and the Ankylosing Spondylitis Disease Activity Score (ASDAS). Radiographic assessments of the cervical and lumbar spine were performed at baseline and after two years. Out of the initial 432 miRNAs, 90 met the selection criteria, and 45 were validated out of which miR-1-3p was upregulated, whereas miR-1248 and miR-1246 were downregulated in axSpA patients. The expression of miR-1-3p correlated with interleukin (IL)-17 and tumour necrosis factor (TNF) levels, indicating its significant role in axSpA pathogenesis. Although specific miRNAs distinguishing disease subtypes or correlating with disease activity or spinal changes were not found, the study identified three dysregulated miRNAs in axSpA patients, with miR-1-3p linked to IL-17 and TNF, underscoring its pathogenetic significance. These findings could help improve the early detection and treatment of axSpA.
- Klíčová slova
- Axial spondyloarthritis, Biomarkers, Cytokines, Profiling, miRNA,
- Publikační typ
- časopisecké články MeSH
MicroRNAs (miRNAs) are small non-coding single-stranded RNAs of about 22 nucleotides in length that act as post-transcriptional regulators of gene expression. Depending on the complementarity between miRNA and target mRNA, cleavage, destabilization, or translational suppression of mRNA occurs within the RISC (RNA-induced silencing complex). As gene expression regulators, miRNAs are involved in a variety of biological functions. Dysregulation of miRNAs and their target genes contribute to the pathophysiology of many diseases, including autoimmune and inflammatory disorders. MiRNAs are also present extracellularly in their stable form in body fluids. Their incorporation into membrane vesicles or protein complexes with Ago2, HDL, or nucleophosmin 1 protects them against RNases. Cell-free miRNAs can be delivered to another cell in vitro and maintain their functional potential. Therefore, miRNAs can be considered mediators of intercellular communication. The remarkable stability of cell-free miRNAs and their accessibility in body fluid makes them potential diagnostic or prognostic biomarkers and potential therapeutic targets. Here we provide an overview of the potential role of circulating miRNAs as biomarkers of disease activity, therapeutic response, or diagnosis in rheumatic diseases. Many circulating miRNAs reflect their involvement in the pathogenesis, while for plenty, their pathogenetic mechanisms remain to be explored. Several miRNAs described as biomarkers were also shown to be of therapeutic potential, and some miRNAs are already tested in clinical trials.
- Klíčová slova
- Biomarker, Diagnosis, Rheumatic diseases, Therapy, miRNA,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Circulating miRNAs appear promising therapeutic and prognostic biomarkers. We aimed to investigate the predictive value of circulating miRNAs on the disease outcome following anti-TNF therapy in patients with ankylosing spondylitis (AS). Our study included 19 AS patients assessed at baseline (M0), after three (M3) and twelve months (M12) of therapy. Total RNA was isolated from plasma. A comprehensive analysis of 380 miRNAs using TaqMan Low Density Array (TLDA) was followed by a single assay validation of selected miRNAs. All AS patients had high baseline disease activity and an excellent response to anti-TNF therapy at M3 and M12. TLDA analysis revealed the dysregulation of 17 circulating miRNAs, including miR-145. Single assay validation confirmed that miR-145 is significantly downregulated at M3 compared to baseline. The decrease in the levels of miR-145 from M0 to M3 negatively correlated with the change in BASDAI from M0 to M3; and positively correlated with disease activity improvement from M3 to M12 as per BASDAI and ASDAS. The predictive value of the early change in miR-145 and levels of miR-145 at M3 were further validated by Receiver operating curves analysis. We show thatthe early change in circulating miR-145 may be a predictor for the future outcome ofAS patients treated with TNF inhibitors. Patients with a more significant decrease in miR-145 levels may show further significant improvement of disease activity after 12 months. Monitoring the expression of miR-145 in plasma in AS patients may, therefore, influence our therapeutic decision-making.
- MeSH
- ankylózující spondylitida krev diagnóza farmakoterapie imunologie MeSH
- biologické markery krev MeSH
- časové faktory MeSH
- cirkulující mikroRNA krev MeSH
- dospělí MeSH
- inhibitory TNF škodlivé účinky terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA krev MeSH
- mladý dospělý MeSH
- TNF-alfa antagonisté a inhibitory MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- cirkulující mikroRNA MeSH
- inhibitory TNF MeSH
- mikro RNA MeSH
- MIRN145 microRNA, human MeSH Prohlížeč
- TNF protein, human MeSH Prohlížeč
- TNF-alfa MeSH
BACKGROUND: S100A4 is a member of calcium binding S100 protein family well known for its role in cancer progression and metastasis. Nevertheless, S100A4 also serves as a negative regulator of bone formation. Dickkopf-1 (DKK-1), marker of bone remodelling, is also implicated in the process of syndesmophyte formation in ankylosing spondylitis. The aim of our study was to evaluate plasma levels of S100A4 in patients with axial spondyloarthritis and to determine the potential association of S100A4 with disease severity, clinical manifestations and with bone changes in a cross-sectional study. METHODS: Fifty-eight patients with axial spondyloarthritis and 40 healthy controls were studied. Biological samples were analysed for S100A4 and Dickkopf-1. Disease activity was assessed according to the Bath Ankylosing Spondylitis Disease Activity Index. C-reactive protein (CRP) was used as a marker of inflammation. Radiographic damage was assessed using the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS). RESULTS: The plasma levels of S100A4 were significantly higher in patients with axial spondyloarthritis compared to heathy controls (p < 0.0001). The levels of S100A4 were higher in early stages of the disease and lower in patients with the presence of syndesmophytes (p = 0.009). Furthermore, we found weak but significant inverse correlation of plasma S100A4 with the mSASSS (r = - 0.363, p = 0.030). Levels of S100A4 were negatively associated with disease duration (r = - 0.404, p = 0.002) and positively with Dickkopf-1 binding capacity (r = 0.312, p = 0.023). CONCLUSIONS: This is the first study showing elevated circulating levels of S100A4 in patients with axial spondyloarthritis, particularly in early stages of the disease prior to spinal involvement, and its significantly lower levels in patients with syndesmophytes. The role of S100A4 in the pathogenesis of axial spondyloarthritis can be suggested.
- Klíčová slova
- Axial spondyloarthritis, Disease duration, Disease severity, S100A4, Syndesmophyte,
- Publikační typ
- časopisecké články MeSH